

DevOps with

ASP.NET Core

and Azure

Microsoft Corporation

Cam Soper

Scott Addie

ii

DevOps with ASP.NET Core and Azure

By Cam Soper and Scott Addie

Version 1.2.1

Updated September 7, 2018

The content in this book is open source. Review the license, view the latest updates, provide

feedback, and propose changes at https://aka.ms/aspnetdevops.

PUBLISHED BY

Microsoft Developer Division, .NET, and Visual Studio product teams

A division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2018 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in

any form or by any means without the written permission of the publisher.

This book is provided "as-is" and expresses the author's views and opinions. The views, opinions

and information expressed in this book, including URL and other Internet website references,

may change without notice.

Some examples depicted herein are provided for illustration only and are fictitious. No real

association or connection is intended or should be inferred.

Microsoft and the trademarks listed at https://www.microsoft.com on the "Trademarks"

webpage are trademarks of the Microsoft group of companies.

Mac and macOS are trademarks of Apple Inc.

All other marks and logos are property of their respective owners.

https://twitter.com/camsoper
https://twitter.com/scottaddie
https://aka.ms/aspnetdevops
https://www.microsoft.com/

iii

Acknowledgments

Thank you to everyone in the .NET community who contributed to this guide with helpful
suggestions! We’d like to especially thank the following community members who contributed
feedback on this material:

• Sam Wronski

• Jeffrey Palermo

Within Microsoft, the following people were instrumental for guidance, reviews, and
encouragement:

• Bill Wagner

• Cesar de la Torre

• Scott Hunter

• Wade Pickett

https://www.youtube.com/c/worldofzerodevelopment
https://twitter.com/jeffreypalermo
https://twitter.com/billwagner
https://twitter.com/cesardelatorre
https://twitter.com/coolcsh
https://twitter.com/wadeontheweb

iv

Contents
Introduction .. 1

Who this guide is for ... 1

What this guide doesn’t cover .. 1

What’s in this guide .. 1

Tools and downloads .. 1

Deploy to App Service ... 1

Continuous integration and deployment .. 1

Monitor and debug ... 1

Next steps ... 1

Additional introductory reading ... 2

Tools and downloads .. 3

Prerequisites ... 3

Recommended tools (Windows only) ... 3

Deploy an app to App Service ... 4

Download and test the app .. 4

Create the Azure App Service Web App ... 5

Deployment with Visual Studio ... 7

Deployment slots .. 10

Summary ... 13

Additional reading ... 14

Continuous integration and deployment .. 15

Publish the app’s code to GitHub ... 15

Disconnect local Git deployment .. 16

Create a VSTS account .. 16

Configure the DevOps pipeline ... 17

Grant VSTS access to the GitHub repository ... 18

Create the build definition .. 19

Create the release pipeline ... 20

Commit changes to GitHub and automatically deploy to Azure .. 25

Examine the VSTS DevOps pipeline .. 27

Build definition .. 27

Release pipeline .. 30

v

Additional reading ... 33

Monitor and debug ... 34

Basic monitoring and troubleshooting ... 34

Advanced monitoring .. 36

Profile with Application Insights ... 36

Logging .. 41

Log streaming .. 41

Alerts ... 42

Live debugging .. 42

Conclusion ... 42

Additional reading ... 43

Next steps ... 44

Storage and databases .. 44

Identity .. 44

Mobile ... 44

Web infrastructure.. 44

1

Introduction

Welcome to the Azure Development Lifecycle guide for .NET! This guide introduces the basic
concepts of building a development lifecycle around Azure using .NET tools and processes. After
finishing this guide, you’ll reap the benefits of a mature DevOps toolchain.

Who this guide is for

You should be an experienced ASP.NET developer (200-300 level). You don’t need to know
anything about Azure, as we’ll cover that in this introduction. This guide may also be useful for
DevOps engineers who are more focused on operations than development.

This guide targets Windows developers. However, Linux and macOS are fully supported by .NET
Core. To adapt this guide for Linux/macOS, watch for callouts for Linux/macOS differences.

What this guide doesn’t cover

This guide is focused on an end-to-end continuous deployment experience for .NET developers.
It’s not an exhaustive guide to all things Azure, and it doesn’t focus extensively on .NET APIs for
Azure services. The emphasis is all around continuous integration, deployment, monitoring, and
debugging. Near the end of the guide, recommendations for next steps are offered. Included in
the suggestions are Azure platform services that are useful to ASP.NET developers.

What’s in this guide

Tools and downloads

Learn where to acquire the tools used in this guide.

Deploy to App Service

Learn the various methods for deploying an ASP.NET Core app to Azure App Service.

Continuous integration and deployment

Build an end-to-end continuous integration and deployment solution for your ASP.NET Core
app with GitHub, VSTS, and Azure.

Monitor and debug

Use Azure’s tools to monitor, troubleshoot, and tune your application.

Next steps

Other learning paths for the ASP.NET Core developer learning Azure.

2

Additional introductory reading

If this is your first exposure to cloud computing, these articles explain the basics.

• What is Cloud Computing?

• Examples of Cloud Computing

• What is IaaS?

• What is PaaS?

https://azure.microsoft.com/overview/what-is-cloud-computing/
https://azure.microsoft.com/overview/examples-of-cloud-computing/
https://azure.microsoft.com/overview/what-is-iaas/
https://azure.microsoft.com/overview/what-is-paas/

3

Tools and downloads

Azure has several interfaces for provisioning and managing resources, such as the Azure portal,
Azure CLI, Azure PowerShell, Azure Cloud Shell, and Visual Studio. This guide takes a minimalist
approach and uses the Azure Cloud Shell whenever possible to reduce the steps required.
However, the Azure portal must be used for some portions.

Prerequisites

The following subscriptions are required:

• Azure — If you don’t have an account, get a free trial.

• Visual Studio Team Services (VSTS) — This account is created in Chapter 4.

• GitHub — If you don’t have an account, sign up for free.

The following tools are required:

• Git — A fundamental understanding of Git is recommended for this guide. Review the Git
documentation, specifically git remote and git push.

• .NET Core SDK — Version 2.1.300 or later is required to build and run the sample app. If Visual
Studio is installed with the .NET Core cross-platform development workload, the .NET Core SDK is
already installed.

 Verify your .NET Core SDK installation. Open a command shell, and run the following command:

 dotnet --version

Recommended tools (Windows only)
• Visual Studio’s robust Azure tools provide a GUI for most of the functionality described in this

guide. Any edition of Visual Studio will work, including the free Visual Studio Community Edition.
The tutorials are written to demonstrate development, deployment, and DevOps both with and
without Visual Studio.

 Confirm that Visual Studio has the following workloads installed:

– ASP.NET and web development

– Azure development

– .NET Core cross-platform development

https://portal.azure.com/
https://docs.microsoft.com/cli/azure/
https://docs.microsoft.com/en-us/powershell/azure/overview
https://shell.azure.com/bash
https://azure.microsoft.com/free/
https://github.com/join
https://git-scm.com/downloads
https://git-scm.com/doc
https://git-scm.com/doc
https://git-scm.com/docs/git-remote
https://git-scm.com/docs/git-push
https://www.microsoft.com/net/download/
https://www.visualstudio.com/
https://docs.microsoft.com/visualstudio/install/modify-visual-studio

4

Deploy an app to App Service

Azure App Service is Azure’s web hosting platform. Deploying a web app to Azure App Service
can be done manually or by an automated process. This section of the guide discusses
deployment methods that can be triggered manually or by script using the command line, or
triggered manually using Visual Studio.

In this section, you’ll accomplish the following tasks:

• Download and build the sample app.

• Create an Azure App Service Web App using the Azure Cloud Shell.

• Deploy the sample app to Azure using Git.

• Deploy a change to the app using Visual Studio.

• Add a staging slot to the web app.

• Deploy an update to the staging slot.

• Swap the staging and production slots.

Download and test the app

The app used in this guide is a pre-built ASP.NET Core app, Simple Feed Reader. It’s a Razor
Pages app that uses the Microsoft.SyndicationFeed.ReaderWriter API to retrieve an
RSS/Atom feed and display the news items in a list.

Feel free to review the code, but it’s important to understand that there’s nothing special about
this app. It’s just a simple ASP.NET Core app for illustrative purposes.

From a command shell, download the code, build the project, and run it as follows.

Note: Linux/macOS users should make appropriate changes for paths, e.g., using forward slash (/) rather than back
slash (\).

1. Clone the code to a folder on your local machine.

 git clone https://github.com/Azure-Samples/simple-feed-reader/

2. Change your working folder to the simple-feed-reader folder that was created.

 cd .\simple-feed-reader\SimpleFeedReader

3. Restore the packages, and build the solution.

 dotnet build

4. Run the app.

 dotnet run

https://docs.microsoft.com/azure/app-service/
https://github.com/Azure-Samples/simple-feed-reader/

5

 The dotnet run command is successful

5. Open a browser and navigate to http://localhost:5000. The app allows you to type or paste
a syndication feed URL and view a list of news items.

 The app displaying the contents of an RSS feed

6. Once you’re satisfied the app is working correctly, shut it down by pressing Ctrl+C in the command
shell.

Create the Azure App Service Web App

To deploy the app, you’ll need to create an App Service Web App. After creation of the Web
App, you’ll deploy to it from your local machine using Git.

https://docs.microsoft.com/azure/app-service/app-service-web-overview

6

1. Sign in to the Azure Cloud Shell. Note: When you sign in for the first time, Cloud Shell prompts to
create a storage account for configuration files. Accept the defaults or provide a unique name.

2. Use the Cloud Shell for the following steps.

a. Declare a variable to store your web app’s name. The name must be unique to be
used in the default URL. Using the $RANDOM Bash function to construct the name
guarantees uniqueness and results in the format webappname99999.

 webappname=mywebapp$RANDOM

b. Create a resource group. Resource groups provide a means to aggregate Azure
resources to be managed as a group.

 az group create --location centralus --name AzureTutorial

 The az command invokes the Azure CLI. The CLI can be run locally, but using it in the Cloud Shell
saves time and configuration.

c. Create an App Service plan in the S1 tier. An App Service plan is a grouping of web
apps that share the same pricing tier. The S1 tier isn’t free, but it’s required for the
staging slots feature.

 az appservice plan create --name $webappname --resource-group AzureTutori
al --sku S1

d. Create the web app resource using the App Service plan in the same resource
group.

 az webapp create --name $webappname --resource-group AzureTutorial --plan
$webappname

e. Set the deployment credentials. These deployment credentials apply to all the web
apps in your subscription. Don’t use special characters in the user name.

 az webapp deployment user set --user-name REPLACE_WITH_USER_NAME --passwo
rd REPLACE_WITH_PASSWORD

f. Configure the web app to accept deployments from local Git and display the Git
deployment URL. Note this URL for reference later.

 echo Git deployment URL: $(az webapp deployment source config-local-git -
-name $webappname --resource-group AzureTutorial --query url --output tsv
)

g. Display the web app URL. Browse to this URL to see the blank web app. Note this
URL for reference later.

https://shell.azure.com/bash
https://docs.microsoft.com/cli/azure/

7

 echo Web app URL: http://$webappname.azurewebsites.net

3. Using a command shell on your local machine, navigate to the web app’s project folder (for
example, .\simple-feed-reader\SimpleFeedReader). Execute the following commands to
set up Git to push to the deployment URL:

a. Add the remote URL to the local repository.

 git remote add azure-prod GIT_DEPLOYMENT_URL

b. Push the local master branch to the azure-prod remote’s master branch.

 git push azure-prod master

 You’ll be prompted for the deployment credentials you created earlier. Observe the output in the
command shell. Azure builds the ASP.NET Core app remotely.

4. In a browser, navigate to the Web app URL and note the app has been built and deployed.
Additional changes can be committed to the local Git repository with git commit. These changes
are pushed to Azure with the preceding git push command.

Deployment with Visual Studio
Note: This section applies to Windows only. Linux and macOS users should make the change described in step 2
below. Save the file, and commit the change to the local repository with git commit. Finally, push the change with
git push, as in the first section.

The app has already been deployed from the command shell. Let’s use Visual Studio’s
integrated tools to deploy an update to the app. Behind the scenes, Visual Studio accomplishes
the same thing as the command line tooling, but within Visual Studio’s familiar UI.

1. Open SimpleFeedReader.sln in Visual Studio.

2. In Solution Explorer, open Pages.cshtml. Change <h2>Simple Feed Reader</h2> to
<h2>Simple Feed Reader - V2</h2>.

3. Press Ctrl+Shift+B to build the app.

4. In Solution Explorer, right-click on the project and click Publish.

8

5. Visual Studio can create a new App Service resource, but this update will be published over

the existing deployment. In the Pick a publish target dialog, select App Service from the
list on the left, and then select Select Existing. Click Publish.

6. In the App Service dialog, confirm that the Microsoft or Organizational account used to
create your Azure subscription is displayed in the upper right. If it’s not, click the drop-
down and add it.

7. Confirm that the correct Azure Subscription is selected. For View, select Resource Group. Expand
the AzureTutorial resource group and then select the existing web app. Click OK.

9

 Publish App Service dialog

Visual Studio builds and deploys the app to Azure. Browse to the web app URL. Validate that
the <h2> element modification is live.

10

The app with the changed title

Deployment slots

Deployment slots support the staging of changes without impacting the app running in
production. Once the staged version of the app is validated by a quality assurance team, the
production and staging slots can be swapped. The app in staging is promoted to production in
this manner. The following steps create a staging slot, deploy some changes to it, and swap the
staging slot with production after verification.

1. Sign in to the Azure Cloud Shell, if not already signed in.

2. Create the staging slot.

a. Create a deployment slot with the name staging.

 az webapp deployment slot create --name $webappname --resource-group Azur
eTutorial --slot staging

b. Configure the staging slot to use deployment from local Git and get the staging
deployment URL. Note this URL for reference later.

 echo Git deployment URL for staging: $(az webapp deployment source config
-local-git --name $webappname --resource-group AzureTutorial --slot stagi
ng --query url --output tsv)

c. Display the staging slot’s URL. Browse to the URL to see the empty staging slot.
Note this URL for reference later.

 echo Staging web app URL: http://$webappname-staging.azurewebsites.net

https://shell.azure.com/bash

11

3. In a text editor or Visual Studio, modify Pages/Index.cshtml again so that the <h2> element reads
<h2>Simple Feed Reader - V3</h2> and save the file.

4. Commit the file to the local Git repository, using either the Changes page in Visual Studio’s Team
Explorer tab, or by entering the following using the local machine’s command shell:

 git commit -a -m "upgraded to V3"

5. Using the local machine’s command shell, add the staging deployment URL as a Git remote and
push the committed changes:

a. Add the remote URL for staging to the local Git repository.

 git remote add azure-staging <Git_staging_deployment_URL>

b. Push the local master branch to the azure-staging remote’s master branch.

 git push azure-staging master

 Wait while Azure builds and deploys the app.

6. To verify that V3 has been deployed to the staging slot, open two browser windows. In one
window, navigate to the original web app URL. In the other window, navigate to the staging web
app URL. The production URL serves V2 of the app. The staging URL serves V3 of the app.

12

 Comparing the browser windows

7. In the Cloud Shell, swap the verified/warmed-up staging slot into production.

 az webapp deployment slot swap --name $webappname --resource-group AzureT
utorial --slot staging

8. Verify that the swap occurred by refreshing the two browser windows.

13

 Comparing the browser windows after the swap

Summary

In this section, the following tasks were completed:

• Downloaded and built the sample app.

• Created an Azure App Service Web App using the Azure Cloud Shell.

• Deployed the sample app to Azure using Git.

14

• Deployed a change to the app using Visual Studio.

• Added a staging slot to the web app.

• Deployed an update to the staging slot.

• Swapped the staging and production slots.

In the next section, you’ll learn how to build a DevOps pipeline with Azure and Visual Studio
Team Services.

Additional reading
• Web Apps overview

• Build a .NET Core and SQL Database web app in Azure App Service

• Configure deployment credentials for Azure App Service

• Set up staging environments in Azure App Service

https://docs.microsoft.com/azure/app-service/app-service-web-overview
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-dotnetcore-sqldb
https://docs.microsoft.com/azure/app-service/app-service-deployment-credentials
https://docs.microsoft.com/azure/app-service/web-sites-staged-publishing

15

Continuous integration and deployment

In the previous chapter, you created a local Git repository for the Simple Feed Reader app. In
this chapter, you’ll publish that code to a GitHub repository and construct a Visual Studio Team
Services (VSTS) DevOps pipeline. The pipeline enables continuous builds and deployments of
the app. Any commit to the GitHub repository triggers a build and a deployment to the Azure
Web App’s staging slot.

In this section, you’ll complete the following tasks:

• Publish the app’s code to GitHub

• Disconnect local Git deployment

• Create a VSTS account

• Create a team project in VSTS

• Create a build definition

• Create a release pipeline

• Commit changes to GitHub and automatically deploy to Azure

• Examine the VSTS DevOps pipeline

Publish the app’s code to GitHub
9. Open a browser window, and navigate to https://github.com.

10. Click the + drop-down in the header, and select New repository:

 GitHub New Repository option

11. Select your account in the Owner drop-down, and enter simple-feed-reader in the
Repository name textbox.

12. Click the Create repository button.

13. Open your local machine’s command shell. Navigate to the directory in which the simple-
feed-reader Git repository is stored.

14. Rename the existing origin remote to upstream. Execute the following command:
console git remote rename origin upstream

16

15. Add a new origin remote pointing to your copy of the repository on GitHub. Execute the
following command: console git remote add origin
https://github.com/<GitHub_username>/simple-feed-reader/

16. Publish your local Git repository to the newly created GitHub repository. Execute the
following command: console git push -u origin master

17. Open a browser window, and navigate to
https://github.com/<GitHub_username>/simple-feed-reader/. Validate that your
code appears in the GitHub repository.

Disconnect local Git deployment

Remove the local Git deployment with the following steps. VSTS both replaces and augments
that functionality.

18. Open the Azure portal, and navigate to the staging (mywebapp<unique_number>/staging) Web
App. The Web App can be quickly located by entering staging in the portal’s search box:

 staging Web App search term

19. Click Deployment options. A new panel appears. Click Disconnect to remove the local Git
source control configuration that was added in the previous chapter. Confirm the removal
operation by clicking the Yes button.

20. Navigate to the mywebapp App Service. As a reminder, the portal’s search box can be used
to quickly locate the App Service.

21. Click Deployment options. A new panel appears. Click Disconnect to remove the local Git source
control configuration that was added in the previous chapter. Confirm the removal operation by
clicking the Yes button.

Create a VSTS account
22. Open a browser, and navigate to the VSTS account creation page.

23. Type a unique name into the Pick a memorable name textbox to form the URL for
accessing your VSTS account.

24. Select the Git radio button, since the code is hosted in a GitHub repository.

25. Click the Continue button. After a short wait, an account and a team project, named
MyFirstProject, are created.

https://portal.azure.com/
https://go.microsoft.com/fwlink/?LinkId=307137

17

 VSTS account creation page

26. Open the confirmation email indicating that the VSTS account and project are ready for use. Click
the Start your project button:

 Start your project button

27. A browser opens to <account_name>.visualstudio.com. Click the MyFirstProject link to begin
configuring the project’s DevOps pipeline.

Configure the DevOps pipeline

There are three distinct steps to complete. Completing the steps in the following three sections
results in an operational DevOps pipeline.

18

Grant VSTS access to the GitHub repository
28. Expand the or build code from an external repository accordion. Click the Setup Build button:

 Setup Build button

29. Select the GitHub option from the Select a source section:

 Select a source - GitHub

30. Authorization is required before VSTS can access your GitHub repository. Enter GitHub connection
in the Connection name textbox. For example:

 GitHub connection name

31. If two-factor authentication is enabled on your GitHub account, a personal access token is
required. In that case, click the Authorize with a GitHub personal access token link. See
the official GitHub personal access token creation instructions for help. Only the repo
scope of permissions is needed. Otherwise, click the Authorize using OAuth button.

32. When prompted, sign in to your GitHub account. Then select Authorize to grant access to
your VSTS account. If successful, a new service endpoint is created.

33. Click the ellipsis button next to the Repository button. Select the /simple-feed-reader
repository from the list. Click the Select button.

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

19

34. Select the master branch from the Default branch for manual and scheduled builds drop-down.
Click the Continue button. The template selection page appears.

Create the build definition
35. From the template selection page, enter ASP.NET Core in the search box:

 ASP.NET Core search on template page

36. The template search results appear. Hover over the ASP.NET Core template, and click the
Apply button.

37. The Tasks tab of the build definition appears. Click the Triggers tab.

38. Check the Enable continuous integration box. Under the Branch filters section, confirm that the
Type drop-down is set to Include. Set the Branch specification drop-down to master.

 Enable continuous integration settings

 These settings cause a build to trigger when any change is pushed to the master branch of the
GitHub repository. Continuous integration is tested in the Commit changes to GitHub and
automatically deploy to Azure section.

20

39. Click the Save & queue button, and select the Save option:

 Save button

40. The following modal dialog appears:

 Save build definition - modal dialog

 Use the default folder of \, and click the Save button.

Create the release pipeline
41. Click the Releases tab of your team project. Click the New pipeline button.

21

 Releases tab - New definition button

 The template selection pane appears.

42. From the template selection page, enter App Service in the search box:

 Release pipeline template search box

43. The template search results appear. Hover over the Azure App Service Deployment with Slot
template, and click the Apply button. The Pipeline tab of the release pipeline appears.

22

 Release pipeline Pipeline tab

44. Click the Add button in the Artifacts box. The Add artifact panel appears:

23

 Release pipeline - Add artifact panel

45. Select the Build tile from the Source type section. This type allows for the linking of the
release pipeline to the build definition.

46. Select MyFirstProject from the Project drop-down.

47. Select the build definition name, MyFirstProject-ASP.NET Core-CI, from the Source (Build
definition) drop-down.

48. Select Latest from the Default version drop-down. This option builds the artifacts
produced by the latest run of the build definition.

49. Replace the text in the Source alias textbox with Drop.

50. Click the Add button. The Artifacts section updates to display the changes.

51. Click the lightning bolt icon to enable continuous deployments:

24

 Release pipeline Artifacts - lightning bolt icon

 With this option enabled, a deployment occurs each time a new build is available.

52. A Continuous deployment trigger panel appears to the right. Click the toggle button to
enable the feature. It isn’t necessary to enable the Pull request trigger.

53. Click the Add drop-down in the Build branch filters section. Choose the Build Definition’s
default branch option. This filter causes the release to trigger only for a build from the
GitHub repository’s master branch.

54. Click the Save button. Click the OK button in the resulting Save modal dialog.

55. Click the Environment 1 box. An Environment panel appears to the right. Change the Environment
1 text in the Environment name textbox to Production.

 Release pipeline - Environment name textbox

56. Click the 1 phase, 2 tasks link in the Production box:

25

 Release pipeline - Production environment link.png

 The Tasks tab of the environment appears.

57. Click the Deploy Azure App Service to Slot task. Its settings appear in a panel to the right.

58. Select the Azure subscription associated with the App Service from the Azure subscription
drop-down. Once selected, click the Authorize button.

59. Select Web App from the App type drop-down.

60. Select mywebapp/ from the App service name drop-down.

61. Select AzureTutorial from the Resource group drop-down.

62. Select staging from the Slot drop-down.

63. Click the Save button.

64. Hover over the default release pipeline name. Click the pencil icon to edit it. Use MyFirstProject-
ASP.NET Core-CD as the name.

 Release pipeline name

65. Click the Save button.

Commit changes to GitHub and automatically deploy to Azure
66. Open SimpleFeedReader.sln in Visual Studio.

26

67. In Solution Explorer, open Pages.cshtml. Change <h2>Simple Feed Reader -
V3</h2> to <h2>Simple Feed Reader - V4</h2>.

68. Press Ctrl+Shift+B to build the app.

69. Commit the file to the GitHub repository. Use either the Changes page in Visual Studio’s Team
Explorer tab, or execute the following using the local machine’s command shell:

 git commit -a -m "upgraded to V4"

70. Push the change in the master branch to the origin remote of your GitHub repository:

 git push origin master

 The commit appears in the GitHub repository’s master branch:

 GitHub commit in master branch

 The build is triggered, since continuous integration is enabled in the build definition’s Triggers tab:

 enable continuous integration

71. Navigate to the Queued tab of the Build and Release > Builds page in VSTS. The queued build
shows the branch and commit that triggered the build:

 queued build

72. Once the build succeeds, a deployment to Azure occurs. Navigate to the app in the browser. Notice
that the “V4” text appears in the heading:

27

 updated app

Examine the VSTS DevOps pipeline

Build definition

A build definition was created with the name MyFirstProject-ASP.NET Core-CI. Upon
completion, the build produces a .zip file including the assets to be published. The release
pipeline deploys those assets to Azure.

The build definition’s Tasks tab lists the individual steps being used. There are five build tasks.

28

build definition tasks

73. Restore — Executes the dotnet restore command to restore the app’s NuGet
packages. The default package feed used is nuget.org.

74. Build — Executes the dotnet build --configuration release command to
compile the app’s code. This --configuration option is used to produce an optimized
version of the code, which is suitable for deployment to a production environment. Modify
the BuildConfiguration variable on the build definition’s Variables tab if, for example, a
debug configuration is needed.

75. Test — Executes the dotnet test --configuration release --logger trx --
results-directory <local_path_on_build_agent> command to run the app’s unit tests.
Unit tests are executed within any C# project matching the **/*Tests/*.csproj glob pattern.
Test results are saved in a .trx file at the location specified by the --results-directory option.
If any tests fail, the build fails and isn’t deployed.

 Note - To verify the unit tests work, modify SimpleFeedReader.Tests.cs to purposefully break one of the tests.
For example, change Assert.True(result.Count > 0); to Assert.False(result.Count > 0); in
the Returns_News_Stories_Given_Valid_Uri method. Commit and push the change to GitHub. The
build is triggered and fails. The build pipeline status changes to failed. Revert the change, commit, and push
again. The build succeeds.

29

76. Publish — Executes the dotnet publish --configuration release --output
<local_path_on_build_agent> command to produce a .zip file with the artifacts to
be deployed. The --output option specifies the publish location of the .zip file. That
location is specified by passing a predefined variable named
$(build.artifactstagingdirectory). That variable expands to a local path, such as
*c:_work\1, on the build agent.

77. Publish Artifact — Publishes the .zip file produced by the Publish task. The task accepts the .zip file
location as a parameter, which is the predefined variable
$(build.artifactstagingdirectory). The .zip file is published as a folder named drop.

Click the build definition’s Summary link to view a history of builds with the definition:

build definition history

On the resulting page, click the link corresponding to the unique build number:

build definition summary page

A summary of this specific build is displayed. Click the Artifacts tab, and notice the drop folder
produced by the build is listed:

https://docs.microsoft.com/vsts/pipelines/build/variables

30

build definition artifacts - drop folder

Use the Download and Explore links to inspect the published artifacts.

Release pipeline

A release pipeline was created with the name MyFirstProject-ASP.NET Core-CD:

release pipeline overview

The two major components of the release pipeline are the Artifacts and the Environments.
Clicking the box in the Artifacts section reveals the following panel:

31

release pipeline artifacts

The Source (Build definition) value represents the build definition to which this release pipeline
is linked. The .zip file produced by a successful run of the build definition is provided to the
Production environment for deployment to Azure. Click the 1 phase, 2 tasks link in the
Production environment box to view the release pipeline tasks:

release pipeline tasks

The release pipeline consists of two tasks: Deploy Azure App Service to Slot and Manage Azure
App Service - Slot Swap. Clicking the first task reveals the following task configuration:

32

release pipeline deploy task

The Azure subscription, service type, web app name, resource group, and deployment slot are
defined in the deployment task. The Package or folder textbox holds the .zip file path to be
extracted and deployed to the staging slot of the mywebapp<unique_number> web app.

Clicking the slot swap task reveals the following task configuration:

33

release pipeline slot swap task

The subscription, resource group, service type, web app name, and deployment slot details are
provided. The Swap with Production checkbox is checked. Consequently, the bits deployed to
the staging slot are swapped into the production environment.

Additional reading
• Build your ASP.NET Core app

• Build and deploy to an Azure Web App

• Define a CI build process for your GitHub repository

https://docs.microsoft.com/vsts/build-release/apps/aspnet/build-aspnet-core
https://docs.microsoft.com/vsts/build-release/apps/cd/azure/aspnet-core-to-azure-webapp
https://docs.microsoft.com/vsts/pipelines/build/ci-build-github

34

Monitor and debug

Having deployed the app and built a DevOps pipeline, it’s important to understand how to
monitor and troubleshoot the app.

In this section, you’ll complete the following tasks:

• Find basic monitoring and troubleshooting data in the Azure portal

• Learn how Azure Monitor provides a deeper look at metrics across all Azure services

• Connect the web app with Application Insights for app profiling

• Turn on logging and learn where to download logs

• Stream logs in real time

• Learn where to set up alerts

• Learn about remote debugging Azure App Service web apps.

Basic monitoring and troubleshooting

App Service web apps are easily monitored in real time. The Azure portal renders metrics in
easy-to-understand charts and graphs.

1. Open the Azure portal, and then navigate to the mywebapp<unique_number> App Service.

2. The Overview tab displays useful “at-a-glance” information, including graphs displaying recent
metrics.

https://portal.azure.com/

35

 Overview panel

– Http 5xx: Count of server-side errors, usually exceptions in ASP.NET Core code.

– Data In: Data ingress coming into your web app.

– Data Out: Data egress from your web app to clients.

– Requests: Count of HTTP requests.

– Average Response Time: Average time for the web app to respond to HTTP
requests.

 Several self-service tools for troubleshooting and optimization are also found on this page.

36

 Self-service tools

– Diagnose and solve problems is a self-service troubleshooter.

– Application Insights is for profiling performance and app behavior, and is discussed
later in this section.

– App Service Advisor makes recommendations to tune your app experience.

Advanced monitoring

Azure Monitor is the centralized service for monitoring all metrics and setting alerts across
Azure services. Within Azure Monitor, administrators can granularly track performance and
identify trends. Each Azure service offers its own set of metrics to Azure Monitor.

Profile with Application Insights

Application Insights is an Azure service for analyzing the performance and stability of web apps
and how users use them. The data from Application Insights is broader and deeper than that of
Azure Monitor. The data can provide developers and administrators with key information for
improving apps. Application Insights can be added to an Azure App Service resource without
code changes.

1. Open the Azure portal, and then navigate to the mywebapp<unique_number> App Service.

2. From the Overview tab, click the Application Insights tile.

https://docs.microsoft.com/azure/monitoring-and-diagnostics/
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitoring-supported-metrics#microsoftwebsites-excluding-functions
https://docs.microsoft.com/azure/application-insights/app-insights-overview
https://portal.azure.com/

37

 Application Insights tile

3. Select the Create new resource radio button. Use the default resource name, and select the
location for the Application Insights resource. The location doesn’t need to match that of your web
app.

38

 Application Insights setup

4. For Runtime/Framework, select ASP.NET Core. Accept the default settings.

5. Select OK. If prompted to confirm, select Continue.

6. After the resource has been created, click the name of Application Insights resource to navigate
directly to the Application Insights page.

39

 New Application Insights resource is ready

As the app is used, data accumulates. Select Refresh to reload the blade with new data.

40

Application Insights overview tab

Application Insights provides useful server-side information with no additional configuration. To
get the most value from Application Insights, instrument your app with the Application Insights
SDK. When properly configured, the service provides end-to-end monitoring across the web
server and browser, including client-side performance. For more information, see the
Application Insights documentation.

https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/application-insights/app-insights-asp-net-core
https://docs.microsoft.com/azure/application-insights/app-insights-overview

41

Logging

Web server and app logs are disabled by default in Azure App Service. Enable the logs with the
following steps:

1. Open the Azure portal, and navigate to the mywebapp<unique_number> App Service.

2. In the menu to the left, scroll down to the Monitoring section. Select Diagnostics logs.

 Diagnostic logs link

3. Turn on Application Logging (Filesystem). If prompted, click the box to install the
extensions to enable app logging in the web app.

4. Set Web server logging to File System.

5. Enter the Retention Period in days. For example, 30.

6. Click Save.

ASP.NET Core and web server (App Service) logs are generated for the web app. They can be
downloaded using the FTP/FTPS information displayed. The password is the same as the
deployment credentials created earlier in this guide. The logs can be streamed directly to your
local machine with PowerShell or Azure CLI. Logs can also be viewed in Application Insights.

Log streaming

App and web server logs can be streamed in real time through the portal.

1. Open the Azure portal, and navigate to the mywebapp<unique_number> App Service.

2. In the menu to the left, scroll down to the Monitoring section and select Log stream.

https://portal.azure.com/
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log#download
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log#download
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log#how-to-view-logs-in-application-insights
https://portal.azure.com/

42

 Log stream link

Logs can also be streamed via Azure CLI or Azure PowerShell, including through the Cloud Shell.

Alerts

Azure Monitor also provides real time alerts based on metrics, administrative events, and other
criteria.

Note: Currently alerting on web app metrics is only available in the Alerts (classic) service.

The Alerts (classic) service can be found in Azure Monitor or under the Monitoring section of
the App Service settings.

Alerts (classic) link

Live debugging

Azure App Service can be debugged remotely with Visual Studio when logs don’t provide
enough information. However, remote debugging requires the app to be compiled with debug
symbols. Debugging shouldn’t be done in production, except as a last resort.

Conclusion

In this section, you completed the following tasks:

https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log#streamlogs
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal
https://docs.microsoft.com/azure/monitoring-and-diagnostics/monitor-quick-resource-metric-alert-portal
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio#remotedebug

43

• Find basic monitoring and troubleshooting data in the Azure portal

• Learn how Azure Monitor provides a deeper look at metrics across all Azure services

• Connect the web app with Application Insights for app profiling

• Turn on logging and learn where to download logs

• Stream logs in real time

• Learn where to set up alerts

• Learn about remote debugging Azure App Service web apps.

Additional reading
• Troubleshoot ASP.NET Core on Azure App Service

• Common errors reference for Azure App Service and IIS with ASP.NET Core

• Monitor Azure web app performance with Application Insights

• Enable diagnostics logging for web apps in Azure App Service

• Troubleshoot a web app in Azure App Service using Visual Studio

• Create classic metric alerts in Azure Monitor for Azure services - Azure portal

https://docs.microsoft.com/aspnet/core/host-and-deploy/azure-apps/troubleshoot
https://docs.microsoft.com/aspnet/core/host-and-deploy/azure-iis-errors-reference
https://docs.microsoft.com/azure/application-insights/app-insights-azure-web-apps
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-alerts-portal

44

Next steps

In this guide, you created a DevOps pipeline for an ASP.NET Core sample app. Congratulations!
We hope you enjoyed learning to publish ASP.NET Core web apps to Azure App Service and
automate the continuous integration of changes.

Beyond web hosting and DevOps, Azure has a wide array of Platform-as-a-Service (PaaS)
services useful to ASP.NET Core developers. This section gives a brief overview of some of the
most commonly used services.

Storage and databases

Redis Cache is high-throughput, low-latency data caching available as a service. It can be used
for caching page output, reducing database requests, and providing ASP.NET session state
across multiple instances of an app.

Azure Storage is Azure’s massively scalable cloud storage. Developers can take advantage of
Queue Storage for reliable message queuing, and Table Storage is a NoSQL key-value store
designed for rapid development using massive, semi-structured data sets.

Azure SQL Database provides familiar relational database functionality as a service using the
Microsoft SQL Server Engine.

Cosmos DB globally distributed, multi-model NoSQL database service. Multiple APIs are
available, including SQL API (formerly called DocumentDB), Cassandra, and MongoDB.

Identity

Azure Active Directory and Azure Active Directory B2C are both identity services. Azure Active
Directory is designed for enterprise scenarios and enables Azure AD B2B (business-to-business)
collaboration, while Azure Active Directory B2C is intended business-to-customer scenarios,
including social network sign-in.

Mobile

Notification Hubs is a multi-platform, scalable push-notification engine to quickly send millions
of messages to apps running on various types of devices.

Web infrastructure

Azure Container Service manages your hosted Kubernetes environment, making it quick and
easy to deploy and manage containerized apps without container orchestration expertise.

Azure Search is used to create an enterprise search solution over private, heterogenous
content.

Service Fabric is a distributed systems platform that makes it easy to package, deploy, and
manage scalable and reliable microservices and containers.

https://docs.microsoft.com/azure/redis-cache/
https://docs.microsoft.com/azure/storage/
https://docs.microsoft.com/azure/storage/queues/storage-queues-introduction
https://docs.microsoft.com/azure/storage/tables/table-storage-overview
https://docs.microsoft.com/azure/sql-database/
https://docs.microsoft.com/azure/cosmos-db/
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/active-directory-b2c/
https://docs.microsoft.com/azure/notification-hubs/
https://docs.microsoft.com/azure/aks/
https://docs.microsoft.com/azure/search/
https://docs.microsoft.com/azure/service-fabric/

