18 KiB
title | author | description | ms.author | ms.date | no-loc | uid | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Custom Model Binding in ASP.NET Core | ardalis | Learn how model binding allows controller actions to work directly with model types in ASP.NET Core. | riande | 01/06/2020 |
|
mvc/advanced/custom-model-binding |
Custom Model Binding in ASP.NET Core
::: moniker range=">= aspnetcore-3.0"
By Steve Smith and Kirk Larkin
Model binding allows controller actions to work directly with model types (passed in as method arguments), rather than HTTP requests. Mapping between incoming request data and application models is handled by model binders. Developers can extend the built-in model binding functionality by implementing custom model binders (though typically, you don't need to write your own provider).
View or download sample code (how to download)
Default model binder limitations
The default model binders support most of the common .NET Core data types and should meet most developers' needs. They expect to bind text-based input from the request directly to model types. You might need to transform the input prior to binding it. For example, when you have a key that can be used to look up model data. You can use a custom model binder to fetch data based on the key.
Model binding review
Model binding uses specific definitions for the types it operates on. A simple type is converted from a single string in the input. A complex type is converted from multiple input values. The framework determines the difference based on the existence of a TypeConverter
. We recommended you create a type converter if you have a simple string
-> SomeType
mapping that doesn't require external resources.
Before creating your own custom model binder, it's worth reviewing how existing model binders are implemented. Consider the xref:Microsoft.AspNetCore.Mvc.ModelBinding.Binders.ByteArrayModelBinder which can be used to convert base64-encoded strings into byte arrays. The byte arrays are often stored as files or database BLOB fields.
Working with the ByteArrayModelBinder
Base64-encoded strings can be used to represent binary data. For example, an image can be encoded as a string. The sample includes an image as a base64-encoded string in Base64String.txt.
ASP.NET Core MVC can take a base64-encoded string and use a ByteArrayModelBinder
to convert it into a byte array. The xref:Microsoft.AspNetCore.Mvc.ModelBinding.Binders.ByteArrayModelBinderProvider maps byte[]
arguments to ByteArrayModelBinder
:
public IModelBinder GetBinder(ModelBinderProviderContext context)
{
if (context == null)
{
throw new ArgumentNullException(nameof(context));
}
if (context.Metadata.ModelType == typeof(byte[]))
{
var loggerFactory = context.Services.GetRequiredService<ILoggerFactory>();
return new ByteArrayModelBinder(loggerFactory);
}
return null;
}
When creating your own custom model binder, you can implement your own IModelBinderProvider
type, or use the xref:Microsoft.AspNetCore.Mvc.ModelBinderAttribute.
The following example shows how to use ByteArrayModelBinder
to convert a base64-encoded string to a byte[]
and save the result to a file:
[!code-csharp] [!INCLUDEabout the series]
You can POST a base64-encoded string to this api method using a tool like Postman:
As long as the binder can bind request data to appropriately named properties or arguments, model binding will succeed. The following example shows how to use ByteArrayModelBinder
with a view model:
Custom model binder sample
In this section we'll implement a custom model binder that:
- Converts incoming request data into strongly typed key arguments.
- Uses Entity Framework Core to fetch the associated entity.
- Passes the associated entity as an argument to the action method.
The following sample uses the ModelBinder
attribute on the Author
model:
In the preceding code, the ModelBinder
attribute specifies the type of IModelBinder
that should be used to bind Author
action parameters.
The following AuthorEntityBinder
class binds an Author
parameter by fetching the entity from a data source using Entity Framework Core and an authorId
:
[!NOTE] The preceding
AuthorEntityBinder
class is intended to illustrate a custom model binder. The class isn't intended to illustrate best practices for a lookup scenario. For lookup, bind theauthorId
and query the database in an action method. This approach separates model binding failures fromNotFound
cases.
The following code shows how to use the AuthorEntityBinder
in an action method:
The ModelBinder
attribute can be used to apply the AuthorEntityBinder
to parameters that don't use default conventions:
In this example, since the name of the argument isn't the default authorId
, it's specified on the parameter using the ModelBinder
attribute. Both the controller and action method are simplified compared to looking up the entity in the action method. The logic to fetch the author using Entity Framework Core is moved to the model binder. This can be a considerable simplification when you have several methods that bind to the Author
model.
You can apply the ModelBinder
attribute to individual model properties (such as on a viewmodel) or to action method parameters to specify a certain model binder or model name for just that type or action.
Implementing a ModelBinderProvider
Instead of applying an attribute, you can implement IModelBinderProvider
. This is how the built-in framework binders are implemented. When you specify the type your binder operates on, you specify the type of argument it produces, not the input your binder accepts. The following binder provider works with the AuthorEntityBinder
. When it's added to MVC's collection of providers, you don't need to use the ModelBinder
attribute on Author
or Author
-typed parameters.
Note: The preceding code returns a
BinderTypeModelBinder
.BinderTypeModelBinder
acts as a factory for model binders and provides dependency injection (DI). TheAuthorEntityBinder
requires DI to access EF Core. UseBinderTypeModelBinder
if your model binder requires services from DI.
To use a custom model binder provider, add it in ConfigureServices
:
When evaluating model binders, the collection of providers is examined in order. The first provider that returns a binder that matches the input model is used. Adding your provider to the end of the collection may thus result in a built-in model binder being called before your custom binder has a chance. In this example, the custom provider is added to the beginning of the collection to ensure it's always used for Author
action arguments.
Polymorphic model binding
Binding to different models of derived types is known as polymorphic model binding. Polymorphic custom model binding is required when the request value must be bound to the specific derived model type. Polymorphic model binding:
- Isn't typical for a REST API that's designed to interoperate with all languages.
- Makes it difficult to reason about the bound models.
However, if an app requires polymorphic model binding, an implementation might look like the following code:
Recommendations and best practices
Custom model binders:
- Shouldn't attempt to set status codes or return results (for example, 404 Not Found). If model binding fails, an action filter or logic within the action method itself should handle the failure.
- Are most useful for eliminating repetitive code and cross-cutting concerns from action methods.
- Typically shouldn't be used to convert a string into a custom type, a xref:System.ComponentModel.TypeConverter is usually a better option.
::: moniker-end ::: moniker range="< aspnetcore-3.0"
By Steve Smith
Model binding allows controller actions to work directly with model types (passed in as method arguments), rather than HTTP requests. Mapping between incoming request data and application models is handled by model binders. Developers can extend the built-in model binding functionality by implementing custom model binders (though typically, you don't need to write your own provider).
View or download sample code (how to download)
Default model binder limitations
The default model binders support most of the common .NET Core data types and should meet most developers' needs. They expect to bind text-based input from the request directly to model types. You might need to transform the input prior to binding it. For example, when you have a key that can be used to look up model data. You can use a custom model binder to fetch data based on the key.
Model binding review
Model binding uses specific definitions for the types it operates on. A simple type is converted from a single string in the input. A complex type is converted from multiple input values. The framework determines the difference based on the existence of a TypeConverter
. We recommended you create a type converter if you have a simple string
-> SomeType
mapping that doesn't require external resources.
Before creating your own custom model binder, it's worth reviewing how existing model binders are implemented. Consider the xref:Microsoft.AspNetCore.Mvc.ModelBinding.Binders.ByteArrayModelBinder which can be used to convert base64-encoded strings into byte arrays. The byte arrays are often stored as files or database BLOB fields.
Working with the ByteArrayModelBinder
Base64-encoded strings can be used to represent binary data. For example, an image can be encoded as a string. The sample includes an image as a base64-encoded string in Base64String.txt.
ASP.NET Core MVC can take a base64-encoded string and use a ByteArrayModelBinder
to convert it into a byte array. The xref:Microsoft.AspNetCore.Mvc.ModelBinding.Binders.ByteArrayModelBinderProvider maps byte[]
arguments to ByteArrayModelBinder
:
public IModelBinder GetBinder(ModelBinderProviderContext context)
{
if (context == null)
{
throw new ArgumentNullException(nameof(context));
}
if (context.Metadata.ModelType == typeof(byte[]))
{
return new ByteArrayModelBinder();
}
return null;
}
When creating your own custom model binder, you can implement your own IModelBinderProvider
type, or use the xref:Microsoft.AspNetCore.Mvc.ModelBinderAttribute.
The following example shows how to use ByteArrayModelBinder
to convert a base64-encoded string to a byte[]
and save the result to a file:
You can POST a base64-encoded string to this api method using a tool like Postman:
As long as the binder can bind request data to appropriately named properties or arguments, model binding will succeed. The following example shows how to use ByteArrayModelBinder
with a view model:
Custom model binder sample
In this section we'll implement a custom model binder that:
- Converts incoming request data into strongly typed key arguments.
- Uses Entity Framework Core to fetch the associated entity.
- Passes the associated entity as an argument to the action method.
The following sample uses the ModelBinder
attribute on the Author
model:
In the preceding code, the ModelBinder
attribute specifies the type of IModelBinder
that should be used to bind Author
action parameters.
The following AuthorEntityBinder
class binds an Author
parameter by fetching the entity from a data source using Entity Framework Core and an authorId
:
[!NOTE] The preceding
AuthorEntityBinder
class is intended to illustrate a custom model binder. The class isn't intended to illustrate best practices for a lookup scenario. For lookup, bind theauthorId
and query the database in an action method. This approach separates model binding failures fromNotFound
cases.
The following code shows how to use the AuthorEntityBinder
in an action method:
The ModelBinder
attribute can be used to apply the AuthorEntityBinder
to parameters that don't use default conventions:
In this example, since the name of the argument isn't the default authorId
, it's specified on the parameter using the ModelBinder
attribute. Both the controller and action method are simplified compared to looking up the entity in the action method. The logic to fetch the author using Entity Framework Core is moved to the model binder. This can be a considerable simplification when you have several methods that bind to the Author
model.
You can apply the ModelBinder
attribute to individual model properties (such as on a viewmodel) or to action method parameters to specify a certain model binder or model name for just that type or action.
Implementing a ModelBinderProvider
Instead of applying an attribute, you can implement IModelBinderProvider
. This is how the built-in framework binders are implemented. When you specify the type your binder operates on, you specify the type of argument it produces, not the input your binder accepts. The following binder provider works with the AuthorEntityBinder
. When it's added to MVC's collection of providers, you don't need to use the ModelBinder
attribute on Author
or Author
-typed parameters.
Note: The preceding code returns a
BinderTypeModelBinder
.BinderTypeModelBinder
acts as a factory for model binders and provides dependency injection (DI). TheAuthorEntityBinder
requires DI to access EF Core. UseBinderTypeModelBinder
if your model binder requires services from DI.
To use a custom model binder provider, add it in ConfigureServices
:
When evaluating model binders, the collection of providers is examined in order. The first provider that returns a binder is used. Adding your provider to the end of the collection may result in a built-in model binder being called before your custom binder has a chance. In this example, the custom provider is added to the beginning of the collection to ensure it's used for Author
action arguments.
Polymorphic model binding
Binding to different models of derived types is known as polymorphic model binding. Polymorphic custom model binding is required when the request value must be bound to the specific derived model type. Polymorphic model binding:
- Isn't typical for a REST API that's designed to interoperate with all languages.
- Makes it difficult to reason about the bound models.
However, if an app requires polymorphic model binding, an implementation might look like the following code:
Recommendations and best practices
Custom model binders:
- Shouldn't attempt to set status codes or return results (for example, 404 Not Found). If model binding fails, an action filter or logic within the action method itself should handle the failure.
- Are most useful for eliminating repetitive code and cross-cutting concerns from action methods.
- Typically shouldn't be used to convert a string into a custom type, a xref:System.ComponentModel.TypeConverter is usually a better option.
::: moniker-end