AspNetCore.Docs/aspnetcore/mvc/views/razor.md

21 KiB

title author description ms.author ms.date uid
Razor syntax reference for ASP.NET Core rick-anderson Learn about Razor markup syntax for embedding server-based code into webpages. riande 10/26/2018 mvc/views/razor

Razor syntax reference for ASP.NET Core

By Rick Anderson, Luke Latham, Taylor Mullen, and Dan Vicarel

Razor is a markup syntax for embedding server-based code into webpages. The Razor syntax consists of Razor markup, C#, and HTML. Files containing Razor generally have a .cshtml file extension.

Rendering HTML

The default Razor language is HTML. Rendering HTML from Razor markup is no different than rendering HTML from an HTML file. HTML markup in .cshtml Razor files is rendered by the server unchanged.

Razor syntax

Razor supports C# and uses the @ symbol to transition from HTML to C#. Razor evaluates C# expressions and renders them in the HTML output.

When an @ symbol is followed by a Razor reserved keyword, it transitions into Razor-specific markup. Otherwise, it transitions into plain C#.

To escape an @ symbol in Razor markup, use a second @ symbol:

<p>@@Username</p>

The code is rendered in HTML with a single @ symbol:

<p>@Username</p>

HTML attributes and content containing email addresses don't treat the @ symbol as a transition character. The email addresses in the following example are untouched by Razor parsing:

<a href="mailto:Support@contoso.com">Support@contoso.com</a>

Implicit Razor expressions

Implicit Razor expressions start with @ followed by C# code:

<p>@DateTime.Now</p>
<p>@DateTime.IsLeapYear(2016)</p>

With the exception of the C# await keyword, implicit expressions must not contain spaces. If the C# statement has a clear ending, spaces can be intermingled:

<p>@await DoSomething("hello", "world")</p>

Implicit expressions cannot contain C# generics, as the characters inside the brackets (<>) are interpreted as an HTML tag. The following code is not valid:

<p>@GenericMethod<int>()</p>

The preceding code generates a compiler error similar to one of the following:

  • The "int" element wasn't closed. All elements must be either self-closing or have a matching end tag.
  • Cannot convert method group 'GenericMethod' to non-delegate type 'object'. Did you intend to invoke the method?`

Generic method calls must be wrapped in an explicit Razor expression or a Razor code block.

Explicit Razor expressions

Explicit Razor expressions consist of an @ symbol with balanced parenthesis. To render last week's time, the following Razor markup is used:

<p>Last week this time: @(DateTime.Now - TimeSpan.FromDays(7))</p>

Any content within the @() parenthesis is evaluated and rendered to the output.

Implicit expressions, described in the previous section, generally can't contain spaces. In the following code, one week isn't subtracted from the current time:

[!code-cshtml]

The code renders the following HTML:

<p>Last week: 7/7/2016 4:39:52 PM - TimeSpan.FromDays(7)</p>

Explicit expressions can be used to concatenate text with an expression result:

@{
    var joe = new Person("Joe", 33);
}

<p>Age@(joe.Age)</p>

Without the explicit expression, <p>Age@joe.Age</p> is treated as an email address, and <p>Age@joe.Age</p> is rendered. When written as an explicit expression, <p>Age33</p> is rendered.

Explicit expressions can be used to render output from generic methods in .cshtml files. The following markup shows how to correct the error shown earlier caused by the brackets of a C# generic. The code is written as an explicit expression:

<p>@(GenericMethod<int>())</p>

Expression encoding

C# expressions that evaluate to a string are HTML encoded. C# expressions that evaluate to IHtmlContent are rendered directly through IHtmlContent.WriteTo. C# expressions that don't evaluate to IHtmlContent are converted to a string by ToString and encoded before they're rendered.

@("<span>Hello World</span>")

The code renders the following HTML:

&lt;span&gt;Hello World&lt;/span&gt;

The HTML is shown in the browser as:

<span>Hello World</span>

HtmlHelper.Raw output isn't encoded but rendered as HTML markup.

[!WARNING] Using HtmlHelper.Raw on unsanitized user input is a security risk. User input might contain malicious JavaScript or other exploits. Sanitizing user input is difficult. Avoid using HtmlHelper.Raw with user input.

@Html.Raw("<span>Hello World</span>")

The code renders the following HTML:

<span>Hello World</span>

Razor code blocks

Razor code blocks start with @ and are enclosed by {}. Unlike expressions, C# code inside code blocks isn't rendered. Code blocks and expressions in a view share the same scope and are defined in order:

@{
    var quote = "The future depends on what you do today. - Mahatma Gandhi";
}

<p>@quote</p>

@{
    quote = "Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.";
}

<p>@quote</p>

The code renders the following HTML:

<p>The future depends on what you do today. - Mahatma Gandhi</p>
<p>Hate cannot drive out hate, only love can do that. - Martin Luther King, Jr.</p>

Implicit transitions

The default language in a code block is C#, but the Razor Page can transition back to HTML:

@{
    var inCSharp = true;
    <p>Now in HTML, was in C# @inCSharp</p>
}

Explicit delimited transition

To define a subsection of a code block that should render HTML, surround the characters for rendering with the Razor <text> tag:

@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    <text>Name: @person.Name</text>
}

Use this approach to render HTML that isn't surrounded by an HTML tag. Without an HTML or Razor tag, a Razor runtime error occurs.

The <text> tag is useful to control whitespace when rendering content:

  • Only the content between the <text> tag is rendered.
  • No whitespace before or after the <text> tag appears in the HTML output.

Explicit Line Transition with @:

To render the rest of an entire line as HTML inside a code block, use the @: syntax:

@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    @:Name: @person.Name
}

Without the @: in the code, a Razor runtime error is generated.

Warning: Extra @ characters in a Razor file can cause compiler errors at statements later in the block. These compiler errors can be difficult to understand because the actual error occurs before the reported error. This error is common after combining multiple implicit/explicit expressions into a single code block.

Control structures

Control structures are an extension of code blocks. All aspects of code blocks (transitioning to markup, inline C#) also apply to the following structures:

Conditionals @if, else if, else, and @switch

@if controls when code runs:

@if (value % 2 == 0)
{
    <p>The value was even.</p>
}

else and else if don't require the @ symbol:

@if (value % 2 == 0)
{
    <p>The value was even.</p>
}
else if (value >= 1337)
{
    <p>The value is large.</p>
}
else
{
    <p>The value is odd and small.</p>
}

The following markup shows how to use a switch statement:

@switch (value)
{
    case 1:
        <p>The value is 1!</p>
        break;
    case 1337:
        <p>Your number is 1337!</p>
        break;
    default:
        <p>Your number wasn't 1 or 1337.</p>
        break;
}

Looping @for, @foreach, @while, and @do while

Templated HTML can be rendered with looping control statements. To render a list of people:

@{
    var people = new Person[]
    {
          new Person("Weston", 33),
          new Person("Johnathon", 41),
          ...
    };
}

The following looping statements are supported:

@for

@for (var i = 0; i < people.Length; i++)
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>
}

@foreach

@foreach (var person in people)
{
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>
}

@while

@{ var i = 0; }
@while (i < people.Length)
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>

    i++;
}

@do while

@{ var i = 0; }
@do
{
    var person = people[i];
    <p>Name: @person.Name</p>
    <p>Age: @person.Age</p>

    i++;
} while (i < people.Length);

Compound @using

In C#, a using statement is used to ensure an object is disposed. In Razor, the same mechanism is used to create HTML Helpers that contain additional content. In the following code, HTML Helpers render a form tag with the @using statement:

@using (Html.BeginForm())
{
    <div>
        email:
        <input type="email" id="Email" value="">
        <button>Register</button>
    </div>
}

Scope-level actions can be performed with Tag Helpers.

@try, catch, finally

Exception handling is similar to C#:

[!code-cshtml]

@lock

Razor has the capability to protect critical sections with lock statements:

@lock (SomeLock)
{
    // Do critical section work
}

Comments

Razor supports C# and HTML comments:

@{
    /* C# comment */
    // Another C# comment
}
<!-- HTML comment -->

The code renders the following HTML:

<!-- HTML comment -->

Razor comments are removed by the server before the webpage is rendered. Razor uses @* *@ to delimit comments. The following code is commented out, so the server doesn't render any markup:

@*
    @{
        /* C# comment */
        // Another C# comment
    }
    <!-- HTML comment -->
*@

Directives

Razor directives are represented by implicit expressions with reserved keywords following the @ symbol. A directive typically changes the way a view is parsed or enables different functionality.

Understanding how Razor generates code for a view makes it easier to understand how directives work.

[!code-cshtml]

The code generates a class similar to the following:

public class _Views_Something_cshtml : RazorPage<dynamic>
{
    public override async Task ExecuteAsync()
    {
        var output = "Getting old ain't for wimps! - Anonymous";

        WriteLiteral("/r/n<div>Quote of the Day: ");
        Write(output);
        WriteLiteral("</div>");
    }
}

Later in this article, the section Inspect the Razor C# class generated for a view explains how to view this generated class.

@using

The @using directive adds the C# using directive to the generated view:

[!code-cshtml]

@model

The @model directive specifies the type of the model passed to a view:

@model TypeNameOfModel

In an ASP.NET Core MVC app created with individual user accounts, the Views/Account/Login.cshtml view contains the following model declaration:

@model LoginViewModel

The class generated inherits from RazorPage<dynamic>:

public class _Views_Account_Login_cshtml : RazorPage<LoginViewModel>

Razor exposes a Model property for accessing the model passed to the view:

<div>The Login Email: @Model.Email</div>

The @model directive specifies the type of this property. The directive specifies the T in RazorPage<T> that the generated class that the view derives from. If the @model directive isn't specified, the Model property is of type dynamic. The value of the model is passed from the controller to the view. For more information, see Strongly typed models and the @model keyword.

@inherits

The @inherits directive provides full control of the class the view inherits:

@inherits TypeNameOfClassToInheritFrom

The following code is a custom Razor page type:

[!code-csharp]

The CustomText is displayed in a view:

[!code-cshtml]

The code renders the following HTML:

<div>Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping a slop bucket on the street below.</div>

@model and @inherits can be used in the same view. @inherits can be in a _ViewImports.cshtml file that the view imports:

[!code-cshtml]

The following code is an example of a strongly-typed view:

[!code-cshtml]

If "rick@contoso.com" is passed in the model, the view generates the following HTML markup:

<div>The Login Email: rick@contoso.com</div>
<div>Custom text: Gardyloo! - A Scottish warning yelled from a window before dumping a slop bucket on the street below.</div>

@inject

The @inject directive enables the Razor Page to inject a service from the service container into a view. For more information, see Dependency injection into views.

@functions

The @functions directive enables a Razor Page to add a C# code block to a view:

@functions { // C# Code }

For example:

[!code-cshtml]

The code generates the following HTML markup:

<div>From method: Hello</div>

The following code is the generated Razor C# class:

[!code-csharp]

@section

The @section directive is used in conjunction with the layout to enable views to render content in different parts of the HTML page. For more information, see Sections.

Templated Razor delegates

Razor templates allow you to define a UI snippet with the following format:

@<tag>...</tag>

The following example illustrates how to specify a templated Razor delegate as a xref:System.Func`2. The dynamic type is specified for the parameter of the method that the delegate encapsulates. An object type is specified as the return value of the delegate. The template is used with a xref:System.Collections.Generic.List`1 of Pet that has a Name property.

public class Pet
{
    public string Name { get; set; }
}
@{
    Func<dynamic, object> petTemplate = @<p>You have a pet named @item.Name.</p>;

    var pets = new List<Pet>
    {
        new Pet { Name = "Rin Tin Tin" },
        new Pet { Name = "Mr. Bigglesworth" },
        new Pet { Name = "K-9" }
    };
}

The template is rendered with pets supplied by a foreach statement:

@foreach (var pet in pets)
{
    @petTemplate2(pet)
}

Rendered output:

<p>You have a pet named <strong>Rin Tin Tin</strong>.</p>
<p>You have a pet named <strong>Mr. Bigglesworth</strong>.</p>
<p>You have a pet named <strong>K-9</strong>.</p>

You can also supply an inline Razor template as an argument to a method. In the following example, the Repeat method receives a Razor template. The method uses the template to produce HTML content with repeats of items supplied from a list:

@using Microsoft.AspNetCore.Html

@functions {
    public static IHtmlContent Repeat(IEnumerable<dynamic> items, int times, 
        Func<dynamic, IHtmlContent> template)
    {
        var html = new HtmlContentBuilder();

        foreach (var item in items)
        {
            for (var i = 0; i < times; i++)
            {
                html.AppendHtml(template(item));
            }
        }

        return html;
    }
}

Using the list of pets from the prior example, the Repeat method is called with:

<ul>
    @Repeat(pets, 3, @<li>@item.Name</li>)
</ul>

Rendered output:

<ul>
    <li>Rin Tin Tin</li>
    <li>Rin Tin Tin</li>
    <li>Rin Tin Tin</li>
    <li>Mr. Bigglesworth</li>
    <li>Mr. Bigglesworth</li>
    <li>Mr. Bigglesworth</li>
    <li>K-9</li>
    <li>K-9</li>
    <li>K-9</li>
</ul>

Tag Helpers

There are three directives that pertain to Tag Helpers.

Directive Function
@addTagHelper Makes Tag Helpers available to a view.
@removeTagHelper Removes Tag Helpers previously added from a view.
@tagHelperPrefix Specifies a tag prefix to enable Tag Helper support and to make Tag Helper usage explicit.

Razor reserved keywords

Razor keywords

  • page (Requires ASP.NET Core 2.0 and later)
  • namespace
  • functions
  • inherits
  • model
  • section
  • helper (Not currently supported by ASP.NET Core)

Razor keywords are escaped with @(Razor Keyword) (for example, @(functions)).

C# Razor keywords

  • case
  • do
  • default
  • for
  • foreach
  • if
  • else
  • lock
  • switch
  • try
  • catch
  • finally
  • using
  • while

C# Razor keywords must be double-escaped with @(@C# Razor Keyword) (for example, @(@case)). The first @ escapes the Razor parser. The second @ escapes the C# parser.

Reserved keywords not used by Razor

  • class

Inspect the Razor C# class generated for a view

::: moniker range=">= aspnetcore-2.1"

With .NET Core SDK 2.1 or later, the Razor SDK handles compilation of Razor files. When building a project, the Razor SDK generates an obj/<build_configuration>/<target_framework_moniker>/Razor directory in the project root. The directory structure within the Razor directory mirrors the project's directory structure.

Consider the following directory structure in an ASP.NET Core 2.1 Razor Pages project targeting .NET Core 2.1:

  • Areas/
    • Admin/
      • Pages/
        • Index.cshtml
        • Index.cshtml.cs
  • Pages/
    • Shared/
      • _Layout.cshtml
    • _ViewImports.cshtml
    • _ViewStart.cshtml
    • Index.cshtml
    • Index.cshtml.cs

Building the project in Debug configuration yields the following obj directory:

  • obj/
    • Debug/
      • netcoreapp2.1/
        • Razor/
          • Areas/
            • Admin/
              • Pages/
                • Index.g.cshtml.cs
          • Pages/
            • Shared/
              • _Layout.g.cshtml.cs
            • _ViewImports.g.cshtml.cs
            • _ViewStart.g.cshtml.cs
            • Index.g.cshtml.cs

To view the generated class for Pages/Index.cshtml, open obj/Debug/netcoreapp2.1/Razor/Pages/Index.g.cshtml.cs.

::: moniker-end

::: moniker range="<= aspnetcore-2.0"

Add the following class to the ASP.NET Core MVC project:

[!code-csharp]

In Startup.ConfigureServices, override the RazorTemplateEngine added by MVC with the CustomTemplateEngine class:

[!code-csharp]

Set a breakpoint on the return csharpDocument; statement of CustomTemplateEngine. When program execution stops at the breakpoint, view the value of generatedCode.

Text Visualizer view of generatedCode

::: moniker-end

View lookups and case sensitivity

The Razor view engine performs case-sensitive lookups for views. However, the actual lookup is determined by the underlying file system:

  • File based source:
    • On operating systems with case insensitive file systems (for example, Windows), physical file provider lookups are case insensitive. For example, return View("Test") results in matches for /Views/Home/Test.cshtml, /Views/home/test.cshtml, and any other casing variant.
    • On case-sensitive file systems (for example, Linux, OSX, and with EmbeddedFileProvider), lookups are case-sensitive. For example, return View("Test") specifically matches /Views/Home/Test.cshtml.
  • Precompiled views: With ASP.NET Core 2.0 and later, looking up precompiled views is case insensitive on all operating systems. The behavior is identical to physical file provider's behavior on Windows. If two precompiled views differ only in case, the result of lookup is non-deterministic.

Developers are encouraged to match the casing of file and directory names to the casing of:

  • Area, controller, and action names.
  • Razor Pages.

Matching case ensures the deployments find their views regardless of the underlying file system.