AspNetCore.Docs/aspnetcore/blazor/javascript-interop.md

12 KiB
Raw Blame History

title author description monikerRange ms.author ms.custom ms.date uid
Blazor JavaScript interop guardrex Learn how to invoke JavaScript functions from .NET and .NET methods from JavaScript in Blazor apps. >= aspnetcore-3.0 riande mvc 04/25/2019 blazor/javascript-interop

Blazor JavaScript interop

By Javier Calvarro Nelson, Daniel Roth, and Luke Latham

A Blazor app can invoke JavaScript functions from .NET and .NET methods from JavaScript code.

Invoke JavaScript functions from .NET methods

There are times when .NET code is required to call a JavaScript function. For example, a JavaScript call can expose browser capabilities or functionality from a JavaScript library to the app.

To call into JavaScript from .NET, use the IJSRuntime abstraction. The InvokeAsync<T> method takes an identifier for the JavaScript function that you wish to invoke along with any number of JSON-serializable arguments. The function identifier is relative to the global scope (window). If you wish to call window.someScope.someFunction, the identifier is someScope.someFunction. There's no need to register the function before it's called. The return type T must also be JSON serializable.

For server-side apps:

  • Multiple user requests are processed by the server-side app. Don't call JSRuntime.Current in a component to invoke JavaScript functions.
  • Inject the IJSRuntime abstraction and use the injected object to issue JavaScript interop calls.
  • While a Blazor app is prerendering, calling into JavaScript isn't possible because a connection with the browser hasn't been established. For more information, see the Detect when a Blazor app is prerendering section.

The following example is based on TextDecoder, an experimental JavaScript-based decoder. The example demonstrates how to invoke a JavaScript function from a C# method. The JavaScript function accepts a byte array from a C# method, decodes the array, and returns the text to the component for display.

Inside the <head> element of wwwroot/index.html, provide a function that uses TextDecoder to decode a passed array:

[!code-html]

JavaScript code, such as the code shown in the preceding example, can also be loaded from a JavaScript file (.js) with a reference to the script file in the wwwroot/index.html file:

<script src="exampleJsInterop.js"></script>

The following component:

  • Invokes the ConvertArray JavaScript function using JsRuntime when a component button (Convert Array) is selected.
  • After the JavaScript function is called, the passed array is converted into a string. The string is returned to the component for display.

[!code-cshtml]

To use the IJSRuntime abstraction, adopt any of the following approaches:

  • Inject the IJSRuntime abstraction into the Razor component (.razor):

    [!code-cshtml]

  • Inject the IJSRuntime abstraction into a class (.cs):

    [!code-csharp]

  • For dynamic content generation with BuildRenderTree, use the [Inject] attribute:

    [Inject]
    IJSRuntime JSRuntime { get; set; }
    

In the client-side sample app that accompanies this topic, two JavaScript functions are available to the client-side app that interact with the DOM to receive user input and display a welcome message:

  • showPrompt Produces a prompt to accept user input (the user's name) and returns the name to the caller.
  • displayWelcome Assigns a welcome message from the caller to a DOM object with an id of welcome.

wwwroot/exampleJsInterop.js:

[!code-javascript]

Place the <script> tag that references the JavaScript file in the wwwroot/index.html file:

[!code-html]

Don't place a <script> tag in a component file because the <script> tag can't be updated dynamically.

.NET methods interop with the JavaScript functions in the exampleJsInterop.js file by calling IJSRuntime.InvokeAsync<T>.

The IJSRuntime abstraction is asynchronous to allow for server-side scenarios. If the app runs client-side and you want to invoke a JavaScript function synchronously, downcast to IJSInProcessRuntime and call Invoke<T> instead. We recommend that most JavaScript interop libraries use the async APIs to ensure that the libraries are available in all scenarios, client-side or server-side.

The sample app includes a component to demonstrate JavaScript interop. The component:

  • Receives user input via a JavaScript prompt.
  • Returns the text to the component for processing.
  • Calls a second JavaScript function that interacts with the DOM to display a welcome message.

Pages/JSInterop.razor:

[!code-cshtml]

  1. When TriggerJsPrompt is executed by selecting the component's Trigger JavaScript Prompt button, the JavaScript showPrompt function provided in the wwwroot/exampleJsInterop.js file is called.
  2. The showPrompt function accepts user input (the user's name), which is HTML-encoded and returned to the component. The component stores the user's name in a local variable, name.
  3. The string stored in name is incorporated into a welcome message, which is passed to a JavaScript function, displayWelcome, which renders the welcome message into a heading tag.

Detect when a Blazor app is prerendering

[!INCLUDE]

Capture references to elements

Some JavaScript interop scenarios require references to HTML elements. For example, a UI library may require an element reference for initialization, or you might need to call command-like APIs on an element, such as focus or play.

You can capture references to HTML elements in a component using the following approach:

  • Add a ref attribute to the HTML element.
  • Define a field of type ElementRef whose name matches the value of the ref attribute.

The following example shows capturing a reference to the username <input> element:

<input ref="username" ...>

@functions {
    ElementRef username;
}

[!NOTE] Do not use captured element references as a way of populating the DOM. Doing so may interfere with the declarative rendering model.

As far as .NET code is concerned, an ElementRef is an opaque handle. The only thing you can do with ElementRef is pass it through to JavaScript code via JavaScript interop. When you do so, the JavaScript-side code receives an HTMLElement instance, which it can use with normal DOM APIs.

For example, the following code defines a .NET extension method that enables setting the focus on an element:

exampleJsInterop.js:

window.exampleJsFunctions = {
  focusElement : function (element) {
    element.focus();
  }
}

Use IJSRuntime.InvokeAsync<T> and call exampleJsFunctions.focusElement with an ElementRef to focus an element:

[!code-cshtml]

To use an extension method to focus an element, create a static extension method that receives the IJSRuntime instance:

public static Task Focus(this ElementRef elementRef, IJSRuntime jsRuntime)
{
    return jsRuntime.InvokeAsync<object>(
        "exampleJsFunctions.focusElement", elementRef);
}

The method is called directly on the object. The following example assumes that the static Focus method is available from the JsInteropClasses namespace:

[!code-cshtml]

[!IMPORTANT] The username variable is only populated after the component renders and its output includes the > element. If you try to pass an unpopulated ElementRef to JavaScript code, the JavaScript code receives null. To manipulate element references after the component has finished rendering (to set the initial focus on an element) use the OnAfterRenderAsync or OnAfterRender component lifecycle methods.

Invoke .NET methods from JavaScript functions

Static .NET method call

To invoke a static .NET method from JavaScript, use the DotNet.invokeMethod or DotNet.invokeMethodAsync functions. Pass in the identifier of the static method you wish to call, the name of the assembly containing the function, and any arguments. The asynchronous version is preferred to support server-side scenarios. To invoke a .NET method from JavaScript, the .NET method must be public, static, and have the the [JSInvokable] attribute. By default, the method identifier is the method name, but you can specify a different identifier using the JSInvokableAttribute constructor. Calling open generic methods isn't currently supported.

The sample app includes a C# method to return an array of ints. The JSInvokable attribute is applied to the method.

Pages/JsInterop.razor:

[!code-cshtml]

JavaScript served to the client invokes the C# .NET method.

wwwroot/exampleJsInterop.js:

[!code-javascript]

When the Trigger .NET static method ReturnArrayAsync button is selected, examine the console output in the browser's web developer tools.

The console output is:

Array(4) [ 1, 2, 3, 4 ]

The fourth array value is pushed to the array (data.push(4);) returned by ReturnArrayAsync.

Instance method call

You can also call .NET instance methods from JavaScript. To invoke a .NET instance method from JavaScript:

  • Pass the .NET instance to JavaScript by wrapping it in a DotNetObjectRef instance. The .NET instance is passed by reference to JavaScript.
  • Invoke .NET instance methods on the instance using the invokeMethod or invokeMethodAsync functions. The .NET instance can also be passed as an argument when invoking other .NET methods from JavaScript.

[!NOTE] The sample app logs messages to the client-side console. For the following examples demonstrated by the sample app, examine the browser's console output in the browser's developer tools.

When the Trigger .NET instance method HelloHelper.SayHello button is selected, ExampleJsInterop.CallHelloHelperSayHello is called and passes a name, Blazor, to the method.

Pages/JsInterop.razor:

[!code-cshtml]

CallHelloHelperSayHello invokes the JavaScript function sayHello with a new instance of HelloHelper.

JsInteropClasses/ExampleJsInterop.cs:

[!code-csharp]

wwwroot/exampleJsInterop.js:

[!code-javascript]

The name is passed to HelloHelper's constructor, which sets the HelloHelper.Name property. When the JavaScript function sayHello is executed, HelloHelper.SayHello returns the Hello, {Name}! message, which is written to the console by the JavaScript function.

JsInteropClasses/HelloHelper.cs:

[!code-csharp]

Console output in the browser's web developer tools:

Hello, Blazor!

Share interop code in a class library

JavaScript interop code can be included in a class library, which allows you to share the code in a NuGet package.

The class library handles embedding JavaScript resources in the built assembly. The JavaScript files are placed in the wwwroot folder. The tooling takes care of embedding the resources when the library is built.

The built NuGet package is referenced in the project file of the app just as any normal NuGet package is referenced. After the app is restored, app code can call into JavaScript as if it were C#.

For more information, see xref:blazor/class-libraries.