// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ********************************************************************** * Copyright (c) 2003-2008, International Business Machines * Corporation and others. All Rights Reserved. ********************************************************************** * Author: Alan Liu * Created: September 2 2003 * Since: ICU 2.8 ********************************************************************** */ #ifndef GREGOIMP_H #define GREGOIMP_H #include "unicode/utypes.h" #include "unicode/calendar.h" #if !UCONFIG_NO_FORMATTING #include "unicode/ures.h" #include "unicode/locid.h" #include "putilimp.h" U_NAMESPACE_BEGIN /** * A utility class providing mathematical functions used by time zone * and calendar code. Do not instantiate. Formerly just named 'Math'. * @internal */ class ClockMath { public: /** * Divide two integers, returning the floor of the quotient. * Unlike the built-in division, this is mathematically * well-behaved. E.g., -1/4 => 0 but * floorDivide(-1,4) => -1. * @param numerator the numerator * @param denominator a divisor which must be != 0 * @return the floor of the quotient */ static int32_t floorDivide(int32_t numerator, int32_t denominator); /** * Divide two integers, returning the floor of the quotient. * Unlike the built-in division, this is mathematically * well-behaved. E.g., -1/4 => 0 but * floorDivide(-1,4) => -1. * @param numerator the numerator * @param denominator a divisor which must be != 0 * @return the floor of the quotient */ static int64_t floorDivideInt64(int64_t numerator, int64_t denominator); /** * Divide two numbers, returning the floor of the quotient. * Unlike the built-in division, this is mathematically * well-behaved. E.g., -1/4 => 0 but * floorDivide(-1,4) => -1. * @param numerator the numerator * @param denominator a divisor which must be != 0 * @return the floor of the quotient */ static inline double floorDivide(double numerator, double denominator); /** * Divide two numbers, returning the floor of the quotient and * the modulus remainder. Unlike the built-in division, this is * mathematically well-behaved. E.g., -1/4 => 0 and * -1%4 => -1, but floorDivide(-1,4) => * -1 with remainder => 3. NOTE: If numerator is * too large, the returned quotient may overflow. * @param numerator the numerator * @param denominator a divisor which must be != 0 * @param remainder output parameter to receive the * remainder. Unlike numerator % denominator, this * will always be non-negative, in the half-open range [0, * |denominator|). * @return the floor of the quotient */ static int32_t floorDivide(int32_t numerator, int32_t denominator, int32_t* remainder); /** * Divide two numbers, returning the floor of the quotient and * the modulus remainder. Unlike the built-in division, this is * mathematically well-behaved. E.g., -1/4 => 0 and * -1%4 => -1, but floorDivide(-1,4) => * -1 with remainder => 3. NOTE: If numerator is * too large, the returned quotient may overflow. * @param numerator the numerator * @param denominator a divisor which must be != 0 * @param remainder output parameter to receive the * remainder. Unlike numerator % denominator, this * will always be non-negative, in the half-open range [0, * |denominator|). * @return the floor of the quotient */ static double floorDivide(double numerator, int32_t denominator, int32_t* remainder); /** * For a positive divisor, return the quotient and remainder * such that dividend = quotient*divisor + remainder and * 0 <= remainder < divisor. * * Works around edge-case bugs. Handles pathological input * (dividend >> divisor) reasonably. * * Calling with a divisor <= 0 is disallowed. */ static double floorDivide(double dividend, double divisor, double* remainder); }; // Useful millisecond constants #define kOneDay (1.0 * U_MILLIS_PER_DAY) // 86,400,000 #define kOneHour (60*60*1000) #define kOneMinute 60000 #define kOneSecond 1000 #define kOneMillisecond 1 #define kOneWeek (7.0 * kOneDay) // 604,800,000 // Epoch constants #define kJan1_1JulianDay 1721426 // January 1, year 1 (Gregorian) #define kEpochStartAsJulianDay 2440588 // January 1, 1970 (Gregorian) #define kEpochYear 1970 #define kEarliestViableMillis -185331720384000000.0 // minimum representable by julian day -1e17 #define kLatestViableMillis 185753453990400000.0 // max representable by julian day +1e17 /** * The minimum supported Julian day. This value is equivalent to * MIN_MILLIS. */ #define MIN_JULIAN (-0x7F000000) /** * The minimum supported epoch milliseconds. This value is equivalent * to MIN_JULIAN. */ #define MIN_MILLIS ((MIN_JULIAN - kEpochStartAsJulianDay) * kOneDay) /** * The maximum supported Julian day. This value is equivalent to * MAX_MILLIS. */ #define MAX_JULIAN (+0x7F000000) /** * The maximum supported epoch milliseconds. This value is equivalent * to MAX_JULIAN. */ #define MAX_MILLIS ((MAX_JULIAN - kEpochStartAsJulianDay) * kOneDay) /** * A utility class providing proleptic Gregorian calendar functions * used by time zone and calendar code. Do not instantiate. * * Note: Unlike GregorianCalendar, all computations performed by this * class occur in the pure proleptic GregorianCalendar. */ class Grego { public: /** * Return true if the given year is a leap year. * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc. * @return true if the year is a leap year */ static inline UBool isLeapYear(int32_t year); /** * Return the number of days in the given month. * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc. * @param month 0-based month, with 0==Jan * @return the number of days in the given month */ static inline int8_t monthLength(int32_t year, int32_t month); /** * Return the length of a previous month of the Gregorian calendar. * @param y the extended year * @param m the 0-based month number * @return the number of days in the month previous to the given month */ static inline int8_t previousMonthLength(int y, int m); /** * Convert a year, month, and day-of-month, given in the proleptic * Gregorian calendar, to 1970 epoch days. * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc. * @param month 0-based month, with 0==Jan * @param dom 1-based day of month * @return the day number, with day 0 == Jan 1 1970 */ static int64_t fieldsToDay(int32_t year, int32_t month, int32_t dom); /** * Convert a 1970-epoch day number to proleptic Gregorian year, * month, day-of-month, and day-of-week. * @param day 1970-epoch day * @param year output parameter to receive year * @param month output parameter to receive month (0-based, 0==Jan) * @param dom output parameter to receive day-of-month (1-based) * @param dow output parameter to receive day-of-week (1-based, 1==Sun) * @param doy output parameter to receive day-of-year (1-based) * @param status error code. */ static void dayToFields(int32_t day, int32_t& year, int32_t& month, int32_t& dom, int32_t& dow, int32_t& doy, UErrorCode& status); /** * Convert a 1970-epoch day number to proleptic Gregorian year, * month, day-of-month, and day-of-week. * @param day 1970-epoch day * @param year output parameter to receive year * @param month output parameter to receive month (0-based, 0==Jan) * @param dom output parameter to receive day-of-month (1-based) * @param dow output parameter to receive day-of-week (1-based, 1==Sun) * @param status error code. */ static inline void dayToFields(int32_t day, int32_t& year, int32_t& month, int32_t& dom, int32_t& dow, UErrorCode& status); /** * Convert a 1970-epoch milliseconds to proleptic Gregorian year, * month, day-of-month, and day-of-week, day of year and millis-in-day. * @param time 1970-epoch milliseconds * @param year output parameter to receive year * @param month output parameter to receive month (0-based, 0==Jan) * @param dom output parameter to receive day-of-month (1-based) * @param dow output parameter to receive day-of-week (1-based, 1==Sun) * @param doy output parameter to receive day-of-year (1-based) * @param mid output parameter to receive millis-in-day * @param status error code. */ static void timeToFields(UDate time, int32_t& year, int32_t& month, int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid, UErrorCode& status); /** * Return the day of week on the 1970-epoch day * @param day the 1970-epoch day * @return the day of week */ static int32_t dayOfWeek(int32_t day); /** * Returns the ordinal number for the specified day of week within the month. * The valid return value is 1, 2, 3, 4 or -1. * @param year Gregorian year, with 0 == 1 BCE, -1 == 2 BCE, etc. * @param month 0-based month, with 0==Jan * @param dom 1-based day of month * @return The ordinal number for the specified day of week within the month */ static int32_t dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom); /** * Converts Julian day to time as milliseconds. * @param julian the given Julian day number. * @return time as milliseconds. * @internal */ static inline double julianDayToMillis(int32_t julian); /** * Converts time as milliseconds to Julian day. * @param millis the given milliseconds. * @return the Julian day number. * @internal */ static inline int32_t millisToJulianDay(double millis); /** * Calculates the Gregorian day shift value for an extended year. * @param eyear Extended year * @returns number of days to ADD to Julian in order to convert from J->G */ static inline int32_t gregorianShift(int32_t eyear); private: static const int16_t DAYS_BEFORE[24]; static const int8_t MONTH_LENGTH[24]; }; inline double ClockMath::floorDivide(double numerator, double denominator) { return uprv_floor(numerator / denominator); } inline UBool Grego::isLeapYear(int32_t year) { // year&0x3 == year%4 return ((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0)); } inline int8_t Grego::monthLength(int32_t year, int32_t month) { return MONTH_LENGTH[month + (isLeapYear(year) ? 12 : 0)]; } inline int8_t Grego::previousMonthLength(int y, int m) { return (m > 0) ? monthLength(y, m-1) : 31; } inline void Grego::dayToFields(int32_t day, int32_t& year, int32_t& month, int32_t& dom, int32_t& dow, UErrorCode& status) { int32_t doy_unused; dayToFields(day,year,month,dom,dow,doy_unused, status); } inline double Grego::julianDayToMillis(int32_t julian) { return (static_cast(julian) - kEpochStartAsJulianDay) * kOneDay; } inline int32_t Grego::millisToJulianDay(double millis) { return static_cast(kEpochStartAsJulianDay + ClockMath::floorDivide(millis, kOneDay)); } inline int32_t Grego::gregorianShift(int32_t eyear) { int64_t y = static_cast(eyear) - 1; int64_t gregShift = ClockMath::floorDivideInt64(y, 400LL) - ClockMath::floorDivideInt64(y, 100LL) + 2; return static_cast(gregShift); } #define IMPL_SYSTEM_DEFAULT_CENTURY(T, U) \ /** \ * The system maintains a static default century start date and Year. They \ * are initialized the first time they are used. Once the system default \ * century date and year are set, they do not change \ */ \ namespace { \ static UDate gSystemDefaultCenturyStart = DBL_MIN; \ static int32_t gSystemDefaultCenturyStartYear = -1; \ static icu::UInitOnce gSystemDefaultCenturyInit {}; \ static void U_CALLCONV \ initializeSystemDefaultCentury() { \ UErrorCode status = U_ZERO_ERROR; \ T calendar(U, status); \ /* initialize systemDefaultCentury and systemDefaultCenturyYear based */ \ /* on the current time. They'll be set to 80 years before */ \ /* the current time. */ \ if (U_FAILURE(status)) { \ return; \ } \ calendar.setTime(Calendar::getNow(), status); \ calendar.add(UCAL_YEAR, -80, status); \ gSystemDefaultCenturyStart = calendar.getTime(status); \ gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); \ /* We have no recourse upon failure unless we want to propagate the */ \ /* failure out. */ \ } \ } /* namespace */ \ UDate T::defaultCenturyStart() const { \ /* lazy-evaluate systemDefaultCenturyStart */ \ umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); \ return gSystemDefaultCenturyStart; \ } \ int32_t T::defaultCenturyStartYear() const { \ /* lazy-evaluate systemDefaultCenturyStart */ \ umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury); \ return gSystemDefaultCenturyStartYear; \ } \ UBool T::haveDefaultCentury() const { return true; } U_NAMESPACE_END #endif // !UCONFIG_NO_FORMATTING #endif // GREGOIMP_H //eof