mirror of https://github.com/nodejs/node.git
276 lines
11 KiB
C++
276 lines
11 KiB
C++
// © 2020 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
|
|
#include "unicode/utypes.h"
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
#include <cmath>
|
|
|
|
#include "cmemory.h"
|
|
#include "number_decimalquantity.h"
|
|
#include "number_roundingutils.h"
|
|
#include "putilimp.h"
|
|
#include "uarrsort.h"
|
|
#include "uassert.h"
|
|
#include "unicode/fmtable.h"
|
|
#include "unicode/localpointer.h"
|
|
#include "unicode/measunit.h"
|
|
#include "unicode/measure.h"
|
|
#include "units_complexconverter.h"
|
|
#include "units_converter.h"
|
|
|
|
U_NAMESPACE_BEGIN
|
|
namespace units {
|
|
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &targetUnit,
|
|
const ConversionRates &ratesInfo, UErrorCode &status)
|
|
: units_(targetUnit.extractIndividualUnitsWithIndices(status)) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
U_ASSERT(units_.length() != 0);
|
|
|
|
// Just borrowing a pointer to the instance
|
|
MeasureUnitImpl *biggestUnit = &units_[0]->unitImpl;
|
|
for (int32_t i = 1; i < units_.length(); i++) {
|
|
if (UnitsConverter::compareTwoUnits(units_[i]->unitImpl, *biggestUnit, ratesInfo, status) > 0 &&
|
|
U_SUCCESS(status)) {
|
|
biggestUnit = &units_[i]->unitImpl;
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
this->init(*biggestUnit, ratesInfo, status);
|
|
}
|
|
|
|
ComplexUnitsConverter::ComplexUnitsConverter(StringPiece inputUnitIdentifier,
|
|
StringPiece outputUnitsIdentifier, UErrorCode &status) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
MeasureUnitImpl inputUnit = MeasureUnitImpl::forIdentifier(inputUnitIdentifier, status);
|
|
MeasureUnitImpl outputUnits = MeasureUnitImpl::forIdentifier(outputUnitsIdentifier, status);
|
|
|
|
this->units_ = outputUnits.extractIndividualUnitsWithIndices(status);
|
|
U_ASSERT(units_.length() != 0);
|
|
|
|
this->init(inputUnit, ConversionRates(status), status);
|
|
}
|
|
|
|
ComplexUnitsConverter::ComplexUnitsConverter(const MeasureUnitImpl &inputUnit,
|
|
const MeasureUnitImpl &outputUnits,
|
|
const ConversionRates &ratesInfo, UErrorCode &status)
|
|
: units_(outputUnits.extractIndividualUnitsWithIndices(status)) {
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
U_ASSERT(units_.length() != 0);
|
|
|
|
this->init(inputUnit, ratesInfo, status);
|
|
}
|
|
|
|
void ComplexUnitsConverter::init(const MeasureUnitImpl &inputUnit,
|
|
const ConversionRates &ratesInfo,
|
|
UErrorCode &status) {
|
|
// Sorts units in descending order. Therefore, we return -1 if
|
|
// the left is bigger than right and so on.
|
|
auto descendingCompareUnits = [](const void *context, const void *left, const void *right) {
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
const auto *leftPointer = static_cast<const MeasureUnitImplWithIndex *const *>(left);
|
|
const auto *rightPointer = static_cast<const MeasureUnitImplWithIndex *const *>(right);
|
|
|
|
// Multiply by -1 to sort in descending order
|
|
return (-1) * UnitsConverter::compareTwoUnits((**leftPointer).unitImpl, //
|
|
(**rightPointer).unitImpl, //
|
|
*static_cast<const ConversionRates *>(context), //
|
|
status);
|
|
};
|
|
|
|
uprv_sortArray(units_.getAlias(), //
|
|
units_.length(), //
|
|
sizeof units_[0], /* NOTE: we have already asserted that the units_ is not empty.*/ //
|
|
descendingCompareUnits, //
|
|
&ratesInfo, //
|
|
false, //
|
|
&status //
|
|
);
|
|
|
|
// In case the `outputUnits` are `UMEASURE_UNIT_MIXED` such as `foot+inch`. In this case we need more
|
|
// converters to convert from the `inputUnit` to the first unit in the `outputUnits`. Then, a
|
|
// converter from the first unit in the `outputUnits` to the second unit and so on.
|
|
// For Example:
|
|
// - inputUnit is `meter`
|
|
// - outputUnits is `foot+inch`
|
|
// - Therefore, we need to have two converters:
|
|
// 1. a converter from `meter` to `foot`
|
|
// 2. a converter from `foot` to `inch`
|
|
// - Therefore, if the input is `2 meter`:
|
|
// 1. convert `meter` to `foot` --> 2 meter to 6.56168 feet
|
|
// 2. convert the residual of 6.56168 feet (0.56168) to inches, which will be (6.74016
|
|
// inches)
|
|
// 3. then, the final result will be (6 feet and 6.74016 inches)
|
|
for (int i = 0, n = units_.length(); i < n; i++) {
|
|
if (i == 0) { // first element
|
|
unitsConverters_.emplaceBackAndCheckErrorCode(status, inputUnit, units_[i]->unitImpl,
|
|
ratesInfo, status);
|
|
} else {
|
|
unitsConverters_.emplaceBackAndCheckErrorCode(status, units_[i - 1]->unitImpl,
|
|
units_[i]->unitImpl, ratesInfo, status);
|
|
}
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
UBool ComplexUnitsConverter::greaterThanOrEqual(double quantity, double limit) const {
|
|
U_ASSERT(unitsConverters_.length() > 0);
|
|
|
|
// First converter converts to the biggest quantity.
|
|
double newQuantity = unitsConverters_[0]->convert(quantity);
|
|
return newQuantity >= limit;
|
|
}
|
|
|
|
MaybeStackVector<Measure> ComplexUnitsConverter::convert(double quantity,
|
|
icu::number::impl::RoundingImpl *rounder,
|
|
UErrorCode &status) const {
|
|
// TODO: return an error for "foot-and-foot"?
|
|
MaybeStackVector<Measure> result;
|
|
int sign = 1;
|
|
if (quantity < 0 && unitsConverters_.length() > 1) {
|
|
quantity *= -1;
|
|
sign = -1;
|
|
}
|
|
|
|
// For N converters:
|
|
// - the first converter converts from the input unit to the largest unit,
|
|
// - the following N-2 converters convert to bigger units for which we want integers,
|
|
// - the Nth converter (index N-1) converts to the smallest unit, for which
|
|
// we keep a double.
|
|
MaybeStackArray<int64_t, 5> intValues(unitsConverters_.length() - 1, status);
|
|
if (U_FAILURE(status)) {
|
|
return result;
|
|
}
|
|
uprv_memset(intValues.getAlias(), 0, (unitsConverters_.length() - 1) * sizeof(int64_t));
|
|
|
|
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
|
|
quantity = (*unitsConverters_[i]).convert(quantity);
|
|
if (i < n - 1) {
|
|
// If quantity is at the limits of double's precision from an
|
|
// integer value, we take that integer value.
|
|
int64_t flooredQuantity;
|
|
if (uprv_isNaN(quantity)) {
|
|
// With clang on Linux: floor does not support NaN, resulting in
|
|
// a giant negative number. For now, we produce "0 feet, NaN
|
|
// inches". TODO(icu-units#131): revisit desired output.
|
|
flooredQuantity = 0;
|
|
} else {
|
|
flooredQuantity = static_cast<int64_t>(floor(quantity * (1 + DBL_EPSILON)));
|
|
}
|
|
intValues[i] = flooredQuantity;
|
|
|
|
// Keep the residual of the quantity.
|
|
// For example: `3.6 feet`, keep only `0.6 feet`
|
|
double remainder = quantity - flooredQuantity;
|
|
if (remainder < 0) {
|
|
// Because we nudged flooredQuantity up by eps, remainder may be
|
|
// negative: we must treat such a remainder as zero.
|
|
quantity = 0;
|
|
} else {
|
|
quantity = remainder;
|
|
}
|
|
}
|
|
}
|
|
|
|
applyRounder(intValues, quantity, rounder, status);
|
|
|
|
// Initialize empty result. We use a MaybeStackArray directly so we can
|
|
// assign pointers - for this privilege we have to take care of cleanup.
|
|
MaybeStackArray<Measure *, 4> tmpResult(unitsConverters_.length(), status);
|
|
if (U_FAILURE(status)) {
|
|
return result;
|
|
}
|
|
|
|
// Package values into temporary Measure instances in tmpResult:
|
|
for (int i = 0, n = unitsConverters_.length(); i < n; ++i) {
|
|
if (i < n - 1) {
|
|
Formattable formattableQuantity(intValues[i] * sign);
|
|
// Measure takes ownership of the MeasureUnit*
|
|
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
|
|
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
|
|
} else { // LAST ELEMENT
|
|
Formattable formattableQuantity(quantity * sign);
|
|
// Measure takes ownership of the MeasureUnit*
|
|
MeasureUnit *type = new MeasureUnit(units_[i]->unitImpl.copy(status).build(status));
|
|
tmpResult[units_[i]->index] = new Measure(formattableQuantity, type, status);
|
|
}
|
|
}
|
|
|
|
// Transfer values into result and return:
|
|
for(int32_t i = 0, n = unitsConverters_.length(); i < n; ++i) {
|
|
U_ASSERT(tmpResult[i] != nullptr);
|
|
result.emplaceBackAndCheckErrorCode(status, *tmpResult[i]);
|
|
delete tmpResult[i];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void ComplexUnitsConverter::applyRounder(MaybeStackArray<int64_t, 5> &intValues, double &quantity,
|
|
icu::number::impl::RoundingImpl *rounder,
|
|
UErrorCode &status) const {
|
|
if (uprv_isInfinite(quantity) || uprv_isNaN(quantity)) {
|
|
// Inf and NaN can't be rounded, and calculating `carry` below is known
|
|
// to fail on Gentoo on HPPA and OpenSUSE on riscv64. Nothing to do.
|
|
return;
|
|
}
|
|
|
|
if (rounder == nullptr) {
|
|
// Nothing to do for the quantity.
|
|
return;
|
|
}
|
|
|
|
number::impl::DecimalQuantity decimalQuantity;
|
|
decimalQuantity.setToDouble(quantity);
|
|
rounder->apply(decimalQuantity, status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
quantity = decimalQuantity.toDouble();
|
|
|
|
int32_t lastIndex = unitsConverters_.length() - 1;
|
|
if (lastIndex == 0) {
|
|
// Only one element, no need to bubble up the carry
|
|
return;
|
|
}
|
|
|
|
// Check if there's a carry, and bubble it back up the resulting intValues.
|
|
int64_t carry = static_cast<int64_t>(floor(unitsConverters_[lastIndex]->convertInverse(quantity) * (1 + DBL_EPSILON)));
|
|
if (carry <= 0) {
|
|
return;
|
|
}
|
|
quantity -= unitsConverters_[lastIndex]->convert(static_cast<double>(carry));
|
|
intValues[lastIndex - 1] += carry;
|
|
|
|
// We don't use the first converter: that one is for the input unit
|
|
for (int32_t j = lastIndex - 1; j > 0; j--) {
|
|
carry = static_cast<int64_t>(floor(unitsConverters_[j]->convertInverse(static_cast<double>(intValues[j])) * (1 + DBL_EPSILON)));
|
|
if (carry <= 0) {
|
|
return;
|
|
}
|
|
intValues[j] -= static_cast<int64_t>(round(unitsConverters_[j]->convert(static_cast<double>(carry))));
|
|
intValues[j - 1] += carry;
|
|
}
|
|
}
|
|
|
|
} // namespace units
|
|
U_NAMESPACE_END
|
|
|
|
#endif /* #if !UCONFIG_NO_FORMATTING */
|