mirror of https://github.com/nodejs/node.git
477 lines
17 KiB
C++
477 lines
17 KiB
C++
// © 2016 and later: Unicode, Inc. and others.
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
/*
|
|
******************************************************************************
|
|
*
|
|
* Copyright (C) 2008-2015, International Business Machines
|
|
* Corporation and others. All Rights Reserved.
|
|
*
|
|
******************************************************************************
|
|
* file name: uspoof_conf.cpp
|
|
* encoding: UTF-8
|
|
* tab size: 8 (not used)
|
|
* indentation:4
|
|
*
|
|
* created on: 2009Jan05 (refactoring earlier files)
|
|
* created by: Andy Heninger
|
|
*
|
|
* Internal classes for compiling confusable data into its binary (runtime) form.
|
|
*/
|
|
|
|
#include "unicode/utypes.h"
|
|
#include "unicode/uspoof.h"
|
|
#if !UCONFIG_NO_REGULAR_EXPRESSIONS
|
|
#if !UCONFIG_NO_NORMALIZATION
|
|
|
|
#include "unicode/unorm.h"
|
|
#include "unicode/uregex.h"
|
|
#include "unicode/ustring.h"
|
|
#include "cmemory.h"
|
|
#include "uspoof_impl.h"
|
|
#include "uhash.h"
|
|
#include "uvector.h"
|
|
#include "uassert.h"
|
|
#include "uarrsort.h"
|
|
#include "uspoof_conf.h"
|
|
|
|
U_NAMESPACE_USE
|
|
|
|
|
|
//---------------------------------------------------------------------
|
|
//
|
|
// buildConfusableData Compile the source confusable data, as defined by
|
|
// the Unicode data file confusables.txt, into the binary
|
|
// structures used by the confusable detector.
|
|
//
|
|
// The binary structures are described in uspoof_impl.h
|
|
//
|
|
// 1. Parse the data, making a hash table mapping from a UChar32 to a String.
|
|
//
|
|
// 2. Sort all of the strings encountered by length, since they will need to
|
|
// be stored in that order in the final string table.
|
|
// TODO: Sorting these strings by length is no longer needed since the removal of
|
|
// the string lengths table. This logic can be removed to save processing time
|
|
// when building confusables data.
|
|
//
|
|
// 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the
|
|
// list because that will be the ordering of our runtime table.
|
|
//
|
|
// 4. Generate the run time string table. This is generated before the key & value
|
|
// tables because we need the string indexes when building those tables.
|
|
//
|
|
// 5. Build the run-time key and value tables. These are parallel tables, and are built
|
|
// at the same time
|
|
//
|
|
|
|
SPUString::SPUString(LocalPointer<UnicodeString> s) {
|
|
fStr = std::move(s);
|
|
fCharOrStrTableIndex = 0;
|
|
}
|
|
|
|
|
|
SPUString::~SPUString() {
|
|
}
|
|
|
|
|
|
SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(nullptr), fHash(nullptr) {
|
|
LocalPointer<UVector> vec(new UVector(status), status);
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
vec->setDeleter(
|
|
[](void *obj) {delete static_cast<SPUString*>(obj);});
|
|
fVec = vec.orphan();
|
|
fHash = uhash_open(uhash_hashUnicodeString, // key hash function
|
|
uhash_compareUnicodeString, // Key Comparator
|
|
nullptr, // Value Comparator
|
|
&status);
|
|
}
|
|
|
|
|
|
SPUStringPool::~SPUStringPool() {
|
|
delete fVec;
|
|
uhash_close(fHash);
|
|
}
|
|
|
|
|
|
int32_t SPUStringPool::size() {
|
|
return fVec->size();
|
|
}
|
|
|
|
SPUString *SPUStringPool::getByIndex(int32_t index) {
|
|
SPUString* retString = static_cast<SPUString*>(fVec->elementAt(index));
|
|
return retString;
|
|
}
|
|
|
|
|
|
// Comparison function for ordering strings in the string pool.
|
|
// Compare by length first, then, within a group of the same length,
|
|
// by code point order.
|
|
// Conforms to the type signature for a USortComparator in uvector.h
|
|
|
|
static int32_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) {
|
|
const SPUString *sL = const_cast<const SPUString *>(
|
|
static_cast<SPUString *>(left.pointer));
|
|
const SPUString *sR = const_cast<const SPUString *>(
|
|
static_cast<SPUString *>(right.pointer));
|
|
int32_t lenL = sL->fStr->length();
|
|
int32_t lenR = sR->fStr->length();
|
|
if (lenL < lenR) {
|
|
return -1;
|
|
} else if (lenL > lenR) {
|
|
return 1;
|
|
} else {
|
|
return sL->fStr->compare(*(sR->fStr));
|
|
}
|
|
}
|
|
|
|
void SPUStringPool::sort(UErrorCode &status) {
|
|
fVec->sort(SPUStringCompare, status);
|
|
}
|
|
|
|
|
|
SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) {
|
|
LocalPointer<UnicodeString> lpSrc(src);
|
|
if (U_FAILURE(status)) {
|
|
return nullptr;
|
|
}
|
|
SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src));
|
|
if (hashedString != nullptr) {
|
|
return hashedString;
|
|
}
|
|
LocalPointer<SPUString> spuStr(new SPUString(std::move(lpSrc)), status);
|
|
hashedString = spuStr.getAlias();
|
|
fVec->adoptElement(spuStr.orphan(), status);
|
|
if (U_FAILURE(status)) {
|
|
return nullptr;
|
|
}
|
|
uhash_put(fHash, src, hashedString, &status);
|
|
return hashedString;
|
|
}
|
|
|
|
|
|
|
|
ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) :
|
|
fSpoofImpl(spImpl),
|
|
fInput(nullptr),
|
|
fTable(nullptr),
|
|
fKeySet(nullptr),
|
|
fKeyVec(nullptr),
|
|
fValueVec(nullptr),
|
|
fStringTable(nullptr),
|
|
stringPool(nullptr),
|
|
fParseLine(nullptr),
|
|
fParseHexNum(nullptr),
|
|
fLineNum(0)
|
|
{
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
|
|
fTable = uhash_open(uhash_hashLong, uhash_compareLong, nullptr, &status);
|
|
|
|
fKeySet = new UnicodeSet();
|
|
if (fKeySet == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
fKeyVec = new UVector(status);
|
|
if (fKeyVec == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
fValueVec = new UVector(status);
|
|
if (fValueVec == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
|
|
stringPool = new SPUStringPool(status);
|
|
if (stringPool == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
ConfusabledataBuilder::~ConfusabledataBuilder() {
|
|
uprv_free(fInput);
|
|
uregex_close(fParseLine);
|
|
uregex_close(fParseHexNum);
|
|
uhash_close(fTable);
|
|
delete fKeySet;
|
|
delete fKeyVec;
|
|
delete fStringTable;
|
|
delete fValueVec;
|
|
delete stringPool;
|
|
}
|
|
|
|
|
|
void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables,
|
|
int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) {
|
|
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
ConfusabledataBuilder builder(spImpl, status);
|
|
builder.build(confusables, confusablesLen, status);
|
|
if (U_FAILURE(status) && errorType != nullptr) {
|
|
*errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE;
|
|
pe->line = builder.fLineNum;
|
|
}
|
|
}
|
|
|
|
|
|
void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen,
|
|
UErrorCode &status) {
|
|
|
|
// Convert the user input data from UTF-8 to char16_t (UTF-16)
|
|
int32_t inputLen = 0;
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
u_strFromUTF8(nullptr, 0, &inputLen, confusables, confusablesLen, &status);
|
|
if (status != U_BUFFER_OVERFLOW_ERROR) {
|
|
return;
|
|
}
|
|
status = U_ZERO_ERROR;
|
|
fInput = static_cast<char16_t *>(uprv_malloc((inputLen+1) * sizeof(char16_t)));
|
|
if (fInput == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
u_strFromUTF8(fInput, inputLen+1, nullptr, confusables, confusablesLen, &status);
|
|
|
|
|
|
// Regular Expression to parse a line from Confusables.txt. The expression will match
|
|
// any line. What was matched is determined by examining which capture groups have a match.
|
|
// Capture Group 1: the source char
|
|
// Capture Group 2: the replacement chars
|
|
// Capture Group 3-6 the table type, SL, SA, ML, or MA (deprecated)
|
|
// Capture Group 7: A blank or comment only line.
|
|
// Capture Group 8: A syntactically invalid line. Anything that didn't match before.
|
|
// Example Line from the confusables.txt source file:
|
|
// "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... "
|
|
UnicodeString pattern(
|
|
"(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char
|
|
"[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s)
|
|
"(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued)
|
|
"\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type
|
|
"[ \\t]*(?:#.*?)?$" // Match any trailing #comment
|
|
"|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment
|
|
"|^(.*?)$", -1, US_INV); // OR match any line, which catches illegal lines.
|
|
// TODO: Why are we using the regex C API here? C++ would just take UnicodeString...
|
|
fParseLine = uregex_open(pattern.getBuffer(), pattern.length(), 0, nullptr, &status);
|
|
|
|
// Regular expression for parsing a hex number out of a space-separated list of them.
|
|
// Capture group 1 gets the number, with spaces removed.
|
|
pattern = UNICODE_STRING_SIMPLE("\\s*([0-9A-F]+)");
|
|
fParseHexNum = uregex_open(pattern.getBuffer(), pattern.length(), 0, nullptr, &status);
|
|
|
|
// Zap any Byte Order Mark at the start of input. Changing it to a space is benign
|
|
// given the syntax of the input.
|
|
if (*fInput == 0xfeff) {
|
|
*fInput = 0x20;
|
|
}
|
|
|
|
// Parse the input, one line per iteration of this loop.
|
|
uregex_setText(fParseLine, fInput, inputLen, &status);
|
|
while (uregex_findNext(fParseLine, &status)) {
|
|
fLineNum++;
|
|
if (uregex_start(fParseLine, 7, &status) >= 0) {
|
|
// this was a blank or comment line.
|
|
continue;
|
|
}
|
|
if (uregex_start(fParseLine, 8, &status) >= 0) {
|
|
// input file syntax error.
|
|
status = U_PARSE_ERROR;
|
|
return;
|
|
}
|
|
|
|
// We have a good input line. Extract the key character and mapping string, and
|
|
// put them into the appropriate mapping table.
|
|
UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status),
|
|
uregex_end(fParseLine, 1, &status), status);
|
|
|
|
int32_t mapStringStart = uregex_start(fParseLine, 2, &status);
|
|
int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart;
|
|
uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status);
|
|
|
|
UnicodeString *mapString = new UnicodeString();
|
|
if (mapString == nullptr) {
|
|
status = U_MEMORY_ALLOCATION_ERROR;
|
|
return;
|
|
}
|
|
while (uregex_findNext(fParseHexNum, &status)) {
|
|
UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status),
|
|
uregex_end(fParseHexNum, 1, &status), status);
|
|
mapString->append(c);
|
|
}
|
|
U_ASSERT(mapString->length() >= 1);
|
|
|
|
// Put the map (value) string into the string pool
|
|
// This a little like a Java intern() - any duplicates will be eliminated.
|
|
SPUString *smapString = stringPool->addString(mapString, status);
|
|
|
|
// Add the UChar32 -> string mapping to the table.
|
|
// For Unicode 8, the SL, SA and ML tables have been discontinued.
|
|
// All input data from confusables.txt is tagged MA.
|
|
uhash_iput(fTable, keyChar, smapString, &status);
|
|
if (U_FAILURE(status)) { return; }
|
|
fKeySet->add(keyChar);
|
|
}
|
|
|
|
// Input data is now all parsed and collected.
|
|
// Now create the run-time binary form of the data.
|
|
//
|
|
// This is done in two steps. First the data is assembled into vectors and strings,
|
|
// for ease of construction, then the contents of these collections are dumped
|
|
// into the actual raw-bytes data storage.
|
|
|
|
// Build up the string array, and record the index of each string therein
|
|
// in the (build time only) string pool.
|
|
// Strings of length one are not entered into the strings array.
|
|
// (Strings in the table are sorted by length)
|
|
stringPool->sort(status);
|
|
fStringTable = new UnicodeString();
|
|
int32_t poolSize = stringPool->size();
|
|
int32_t i;
|
|
for (i=0; i<poolSize; i++) {
|
|
SPUString *s = stringPool->getByIndex(i);
|
|
int32_t strLen = s->fStr->length();
|
|
int32_t strIndex = fStringTable->length();
|
|
if (strLen == 1) {
|
|
// strings of length one do not get an entry in the string table.
|
|
// Keep the single string character itself here, which is the same
|
|
// convention that is used in the final run-time string table index.
|
|
s->fCharOrStrTableIndex = s->fStr->charAt(0);
|
|
} else {
|
|
s->fCharOrStrTableIndex = strIndex;
|
|
fStringTable->append(*(s->fStr));
|
|
}
|
|
}
|
|
|
|
// Construct the compile-time Key and Value tables
|
|
//
|
|
// For each key code point, check which mapping tables it applies to,
|
|
// and create the final data for the key & value structures.
|
|
//
|
|
// The four logical mapping tables are conflated into one combined table.
|
|
// If multiple logical tables have the same mapping for some key, they
|
|
// share a single entry in the combined table.
|
|
// If more than one mapping exists for the same key code point, multiple
|
|
// entries will be created in the table
|
|
|
|
for (int32_t range=0; range<fKeySet->getRangeCount(); range++) {
|
|
// It is an oddity of the UnicodeSet API that simply enumerating the contained
|
|
// code points requires a nested loop.
|
|
for (UChar32 keyChar=fKeySet->getRangeStart(range);
|
|
keyChar <= fKeySet->getRangeEnd(range); keyChar++) {
|
|
SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(fTable, keyChar));
|
|
U_ASSERT(targetMapping != nullptr);
|
|
|
|
// Set an error code if trying to consume a long string. Otherwise,
|
|
// codePointAndLengthToKey will abort on a U_ASSERT.
|
|
if (targetMapping->fStr->length() > 256) {
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
return;
|
|
}
|
|
|
|
int32_t key = ConfusableDataUtils::codePointAndLengthToKey(keyChar,
|
|
targetMapping->fStr->length());
|
|
int32_t value = targetMapping->fCharOrStrTableIndex;
|
|
|
|
fKeyVec->addElement(key, status);
|
|
fValueVec->addElement(value, status);
|
|
}
|
|
}
|
|
|
|
// Put the assembled data into the flat runtime array
|
|
outputData(status);
|
|
|
|
// All of the intermediate allocated data belongs to the ConfusabledataBuilder
|
|
// object (this), and is deleted in the destructor.
|
|
}
|
|
|
|
//
|
|
// outputData The confusable data has been compiled and stored in intermediate
|
|
// collections and strings. Copy it from there to the final flat
|
|
// binary array.
|
|
//
|
|
// Note that as each section is added to the output data, the
|
|
// expand (reserveSpace() function will likely relocate it in memory.
|
|
// Be careful with pointers.
|
|
//
|
|
void ConfusabledataBuilder::outputData(UErrorCode &status) {
|
|
|
|
U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned);
|
|
|
|
// The Key Table
|
|
// While copying the keys to the runtime array,
|
|
// also sanity check that they are sorted.
|
|
|
|
int32_t numKeys = fKeyVec->size();
|
|
int32_t *keys =
|
|
static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status));
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
int i;
|
|
UChar32 previousCodePoint = 0;
|
|
for (i=0; i<numKeys; i++) {
|
|
int32_t key = fKeyVec->elementAti(i);
|
|
UChar32 codePoint = ConfusableDataUtils::keyToCodePoint(key);
|
|
(void)previousCodePoint; // Suppress unused variable warning.
|
|
// strictly greater because there can be only one entry per code point
|
|
U_ASSERT(codePoint > previousCodePoint);
|
|
keys[i] = key;
|
|
previousCodePoint = codePoint;
|
|
}
|
|
SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData;
|
|
rawData->fCFUKeys = static_cast<int32_t>(reinterpret_cast<char*>(keys) - reinterpret_cast<char*>(rawData));
|
|
rawData->fCFUKeysSize = numKeys;
|
|
fSpoofImpl->fSpoofData->fCFUKeys = keys;
|
|
|
|
|
|
// The Value Table, parallels the key table
|
|
int32_t numValues = fValueVec->size();
|
|
U_ASSERT(numKeys == numValues);
|
|
uint16_t *values =
|
|
static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status));
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
for (i=0; i<numValues; i++) {
|
|
uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i));
|
|
U_ASSERT(value < 0xffff);
|
|
values[i] = static_cast<uint16_t>(value);
|
|
}
|
|
rawData = fSpoofImpl->fSpoofData->fRawData;
|
|
rawData->fCFUStringIndex = static_cast<int32_t>(reinterpret_cast<char*>(values) - reinterpret_cast<char*>(rawData));
|
|
rawData->fCFUStringIndexSize = numValues;
|
|
fSpoofImpl->fSpoofData->fCFUValues = values;
|
|
|
|
// The Strings Table.
|
|
|
|
uint32_t stringsLength = fStringTable->length();
|
|
// Reserve an extra space so the string will be nul-terminated. This is
|
|
// only a convenience, for when debugging; it is not needed otherwise.
|
|
char16_t *strings =
|
|
static_cast<char16_t *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(char16_t)+2, status));
|
|
if (U_FAILURE(status)) {
|
|
return;
|
|
}
|
|
fStringTable->extract(strings, stringsLength+1, status);
|
|
rawData = fSpoofImpl->fSpoofData->fRawData;
|
|
U_ASSERT(rawData->fCFUStringTable == 0);
|
|
rawData->fCFUStringTable = static_cast<int32_t>(reinterpret_cast<char*>(strings) - reinterpret_cast<char*>(rawData));
|
|
rawData->fCFUStringTableLen = stringsLength;
|
|
fSpoofImpl->fSpoofData->fCFUStrings = strings;
|
|
}
|
|
|
|
#endif
|
|
#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
|
|
|