4.9 KiB
Buffers
Pure Javascript is Unicode friendly but not nice to binary data. When dealing with TCP streams or the file system, it's necessary to handle octet streams. Node has several strategies for manipulating, creating, and consuming octet streams.
Raw data is stored in instances of the Buffer
class. A Buffer
is similar
to an array of integers but corresponds to a raw memory allocation outside
the V8 heap. A Buffer
cannot be resized.
The Buffer
object is global.
Converting between Buffers and JavaScript string objects requires an explicit encoding method. Here are the different string encodings;
-
'ascii'
- for 7 bit ASCII data only. This encoding method is very fast, and will strip the high bit if set. -
'utf8'
- Multi byte encoded Unicode characters. Many web pages and other document formats use UTF-8. -
'ucs2'
- 2-bytes, little endian encoded Unicode characters. It can encode only BMP(Basic Multilingual Plane, U+0000 - U+FFFF). -
'base64'
- Base64 string encoding. -
'binary'
- A way of encoding raw binary data into strings by using only the first 8 bits of each character. This encoding method is deprecated and should be avoided in favor ofBuffer
objects where possible. This encoding will be removed in future versions of Node. -
'hex'
- Encode each byte as two hexidecimal characters.
new Buffer(size)
Allocates a new buffer of size
octets.
new Buffer(array)
Allocates a new buffer using an array
of octets.
new Buffer(str, encoding='utf8')
Allocates a new buffer containing the given str
.
buffer.write(string, offset=0, encoding='utf8')
Writes string
to the buffer at offset
using the given encoding. Returns
number of octets written. If buffer
did not contain enough space to fit
the entire string, it will write a partial amount of the string.
The method will not write partial characters.
Example: write a utf8 string into a buffer, then print it
buf = new Buffer(256);
len = buf.write('\u00bd + \u00bc = \u00be', 0);
console.log(len + " bytes: " + buf.toString('utf8', 0, len));
The number of characters written (which may be different than the number of
bytes written) is set in Buffer._charsWritten
and will be overwritten the
next time buf.write()
is called.
buffer.toString(encoding, start=0, end=buffer.length)
Decodes and returns a string from buffer data encoded with encoding
beginning at start
and ending at end
.
See buffer.write()
example, above.
buffer[index]
Get and set the octet at index
. The values refer to individual bytes,
so the legal range is between 0x00
and 0xFF
hex or 0
and 255
.
Example: copy an ASCII string into a buffer, one byte at a time:
str = "node.js";
buf = new Buffer(str.length);
for (var i = 0; i < str.length ; i++) {
buf[i] = str.charCodeAt(i);
}
console.log(buf);
// node.js
Buffer.isBuffer(obj)
Tests if obj
is a Buffer
.
Buffer.byteLength(string, encoding='utf8')
Gives the actual byte length of a string. This is not the same as
String.prototype.length
since that returns the number of characters in a
string.
Example:
str = '\u00bd + \u00bc = \u00be';
console.log(str + ": " + str.length + " characters, " +
Buffer.byteLength(str, 'utf8') + " bytes");
// ½ + ¼ = ¾: 9 characters, 12 bytes
buffer.length
The size of the buffer in bytes. Note that this is not necessarily the size
of the contents. length
refers to the amount of memory allocated for the
buffer object. It does not change when the contents of the buffer are changed.
buf = new Buffer(1234);
console.log(buf.length);
buf.write("some string", "ascii", 0);
console.log(buf.length);
// 1234
// 1234
buffer.copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
Does a memcpy() between buffers.
Example: build two Buffers, then copy buf1
from byte 16 through byte 19
into buf2
, starting at the 8th byte in buf2
.
buf1 = new Buffer(26);
buf2 = new Buffer(26);
for (var i = 0 ; i < 26 ; i++) {
buf1[i] = i + 97; // 97 is ASCII a
buf2[i] = 33; // ASCII !
}
buf1.copy(buf2, 8, 16, 20);
console.log(buf2.toString('ascii', 0, 25));
// !!!!!!!!qrst!!!!!!!!!!!!!
buffer.slice(start, end=buffer.length)
Returns a new buffer which references the
same memory as the old, but offset and cropped by the start
and end
indexes.
Modifying the new buffer slice will modify memory in the original buffer!
Example: build a Buffer with the ASCII alphabet, take a slice, then modify one byte from the original Buffer.
var buf1 = new Buffer(26);
for (var i = 0 ; i < 26 ; i++) {
buf1[i] = i + 97; // 97 is ASCII a
}
var buf2 = buf1.slice(0, 3);
console.log(buf2.toString('ascii', 0, buf2.length));
buf1[0] = 33;
console.log(buf2.toString('ascii', 0, buf2.length));
// abc
// !bc