mirror of https://github.com/nodejs/node.git
241 lines
7.5 KiB
C++
241 lines
7.5 KiB
C++
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following
|
|
// disclaimer in the documentation and/or other materials provided
|
|
// with the distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include "v8.h"
|
|
#include "cctest.h"
|
|
|
|
using namespace v8::internal;
|
|
|
|
static void VerifyRegionMarking(Address page_start) {
|
|
Page* p = Page::FromAddress(page_start);
|
|
|
|
p->SetRegionMarks(Page::kAllRegionsCleanMarks);
|
|
|
|
for (Address addr = p->ObjectAreaStart();
|
|
addr < p->ObjectAreaEnd();
|
|
addr += kPointerSize) {
|
|
CHECK(!Page::FromAddress(addr)->IsRegionDirty(addr));
|
|
}
|
|
|
|
for (Address addr = p->ObjectAreaStart();
|
|
addr < p->ObjectAreaEnd();
|
|
addr += kPointerSize) {
|
|
Page::FromAddress(addr)->MarkRegionDirty(addr);
|
|
}
|
|
|
|
for (Address addr = p->ObjectAreaStart();
|
|
addr < p->ObjectAreaEnd();
|
|
addr += kPointerSize) {
|
|
CHECK(Page::FromAddress(addr)->IsRegionDirty(addr));
|
|
}
|
|
}
|
|
|
|
|
|
TEST(Page) {
|
|
byte* mem = NewArray<byte>(2*Page::kPageSize);
|
|
CHECK(mem != NULL);
|
|
|
|
Address start = reinterpret_cast<Address>(mem);
|
|
Address page_start = RoundUp(start, Page::kPageSize);
|
|
|
|
Page* p = Page::FromAddress(page_start);
|
|
CHECK(p->address() == page_start);
|
|
CHECK(p->is_valid());
|
|
|
|
p->opaque_header = 0;
|
|
p->SetIsLargeObjectPage(false);
|
|
CHECK(!p->next_page()->is_valid());
|
|
|
|
CHECK(p->ObjectAreaStart() == page_start + Page::kObjectStartOffset);
|
|
CHECK(p->ObjectAreaEnd() == page_start + Page::kPageSize);
|
|
|
|
CHECK(p->Offset(page_start + Page::kObjectStartOffset) ==
|
|
Page::kObjectStartOffset);
|
|
CHECK(p->Offset(page_start + Page::kPageSize) == Page::kPageSize);
|
|
|
|
CHECK(p->OffsetToAddress(Page::kObjectStartOffset) == p->ObjectAreaStart());
|
|
CHECK(p->OffsetToAddress(Page::kPageSize) == p->ObjectAreaEnd());
|
|
|
|
// test region marking
|
|
VerifyRegionMarking(page_start);
|
|
|
|
DeleteArray(mem);
|
|
}
|
|
|
|
|
|
TEST(MemoryAllocator) {
|
|
CHECK(Heap::ConfigureHeapDefault());
|
|
CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
|
|
|
|
OldSpace faked_space(Heap::MaxReserved(), OLD_POINTER_SPACE, NOT_EXECUTABLE);
|
|
int total_pages = 0;
|
|
int requested = 2;
|
|
int allocated;
|
|
// If we request two pages, we should get one or two.
|
|
Page* first_page =
|
|
MemoryAllocator::AllocatePages(requested, &allocated, &faked_space);
|
|
CHECK(first_page->is_valid());
|
|
CHECK(allocated > 0 && allocated <= 2);
|
|
total_pages += allocated;
|
|
|
|
Page* last_page = first_page;
|
|
for (Page* p = first_page; p->is_valid(); p = p->next_page()) {
|
|
CHECK(MemoryAllocator::IsPageInSpace(p, &faked_space));
|
|
last_page = p;
|
|
}
|
|
|
|
// Again, we should get one or two pages.
|
|
Page* others =
|
|
MemoryAllocator::AllocatePages(requested, &allocated, &faked_space);
|
|
CHECK(others->is_valid());
|
|
CHECK(allocated > 0 && allocated <= 2);
|
|
total_pages += allocated;
|
|
|
|
MemoryAllocator::SetNextPage(last_page, others);
|
|
int page_count = 0;
|
|
for (Page* p = first_page; p->is_valid(); p = p->next_page()) {
|
|
CHECK(MemoryAllocator::IsPageInSpace(p, &faked_space));
|
|
page_count++;
|
|
}
|
|
CHECK(total_pages == page_count);
|
|
|
|
Page* second_page = first_page->next_page();
|
|
CHECK(second_page->is_valid());
|
|
|
|
// Freeing pages at the first chunk starting at or after the second page
|
|
// should free the entire second chunk. It will return the last page in the
|
|
// first chunk (if the second page was in the first chunk) or else an
|
|
// invalid page (if the second page was the start of the second chunk).
|
|
Page* free_return = MemoryAllocator::FreePages(second_page);
|
|
CHECK(free_return == last_page || !free_return->is_valid());
|
|
MemoryAllocator::SetNextPage(first_page, free_return);
|
|
|
|
// Freeing pages in the first chunk starting at the first page should free
|
|
// the first chunk and return an invalid page.
|
|
Page* invalid_page = MemoryAllocator::FreePages(first_page);
|
|
CHECK(!invalid_page->is_valid());
|
|
|
|
MemoryAllocator::TearDown();
|
|
}
|
|
|
|
|
|
TEST(NewSpace) {
|
|
CHECK(Heap::ConfigureHeapDefault());
|
|
CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
|
|
|
|
NewSpace new_space;
|
|
|
|
void* chunk =
|
|
MemoryAllocator::ReserveInitialChunk(4 * Heap::ReservedSemiSpaceSize());
|
|
CHECK(chunk != NULL);
|
|
Address start = RoundUp(static_cast<Address>(chunk),
|
|
2 * Heap::ReservedSemiSpaceSize());
|
|
CHECK(new_space.Setup(start, 2 * Heap::ReservedSemiSpaceSize()));
|
|
CHECK(new_space.HasBeenSetup());
|
|
|
|
while (new_space.Available() >= Page::kMaxHeapObjectSize) {
|
|
Object* obj = new_space.AllocateRaw(Page::kMaxHeapObjectSize);
|
|
CHECK(!obj->IsFailure());
|
|
CHECK(new_space.Contains(HeapObject::cast(obj)));
|
|
}
|
|
|
|
new_space.TearDown();
|
|
MemoryAllocator::TearDown();
|
|
}
|
|
|
|
|
|
TEST(OldSpace) {
|
|
CHECK(Heap::ConfigureHeapDefault());
|
|
CHECK(MemoryAllocator::Setup(Heap::MaxReserved()));
|
|
|
|
OldSpace* s = new OldSpace(Heap::MaxOldGenerationSize(),
|
|
OLD_POINTER_SPACE,
|
|
NOT_EXECUTABLE);
|
|
CHECK(s != NULL);
|
|
|
|
void* chunk =
|
|
MemoryAllocator::ReserveInitialChunk(4 * Heap::ReservedSemiSpaceSize());
|
|
CHECK(chunk != NULL);
|
|
Address start = static_cast<Address>(chunk);
|
|
size_t size = RoundUp(start, 2 * Heap::ReservedSemiSpaceSize()) - start;
|
|
|
|
CHECK(s->Setup(start, size));
|
|
|
|
while (s->Available() > 0) {
|
|
Object* obj = s->AllocateRaw(Page::kMaxHeapObjectSize);
|
|
CHECK(!obj->IsFailure());
|
|
}
|
|
|
|
s->TearDown();
|
|
delete s;
|
|
MemoryAllocator::TearDown();
|
|
}
|
|
|
|
|
|
TEST(LargeObjectSpace) {
|
|
CHECK(Heap::Setup(false));
|
|
|
|
LargeObjectSpace* lo = Heap::lo_space();
|
|
CHECK(lo != NULL);
|
|
|
|
Map* faked_map = reinterpret_cast<Map*>(HeapObject::FromAddress(0));
|
|
int lo_size = Page::kPageSize;
|
|
|
|
Object* obj = lo->AllocateRaw(lo_size);
|
|
CHECK(!obj->IsFailure());
|
|
CHECK(obj->IsHeapObject());
|
|
|
|
HeapObject* ho = HeapObject::cast(obj);
|
|
ho->set_map(faked_map);
|
|
|
|
CHECK(lo->Contains(HeapObject::cast(obj)));
|
|
|
|
CHECK(lo->FindObject(ho->address()) == obj);
|
|
|
|
CHECK(lo->Contains(ho));
|
|
|
|
while (true) {
|
|
intptr_t available = lo->Available();
|
|
obj = lo->AllocateRaw(lo_size);
|
|
if (obj->IsFailure()) break;
|
|
HeapObject::cast(obj)->set_map(faked_map);
|
|
CHECK(lo->Available() < available);
|
|
};
|
|
|
|
CHECK(!lo->IsEmpty());
|
|
|
|
obj = lo->AllocateRaw(lo_size);
|
|
CHECK(obj->IsFailure());
|
|
|
|
lo->TearDown();
|
|
delete lo;
|
|
|
|
MemoryAllocator::TearDown();
|
|
}
|